Farm salmon escape event: levels of farm/wild hybridisation

Results of a genetic survey to examine levels of farm/wild hybrid salmon in rivers local to a large-scale farm escape in in south west Scotland and north east England. This occurred in 2020 when MOWI’s Carradale North fish farm shifted position after its seabed anchors became dislodged during Storm Ellen.


  • Anon 2020. Nearly 50,000 salmon escape from Scottish fish farm after storm damage. The Fish Site.
  • Bradbury, I. R., Burgetz, I., Coulson, M. W., Verspoor, E., Gilbey, J., Lehnert, S. J., Kess, T., et al. 2020. Beyond hybridization: the genetic impacts of non-reproductive ecological interactions of salmon aquaculture on wild populations. Aquaculture Environment Interactions, 12: 429-445.
  • Burns, P., Brabbs, S., and Wells, A. 2021. Monitoring for the presence of farmed salmon in West Coast Scottish rivers following an escape from the Carradale North salmon farm. 11 pp.
  • Diserud, O. H., Hindar, K., Karlsson, S., Glover, K., and Skaala, Ø. 2020. Genetic impact of escaped farmed Atlantic salmon on wild salmon populations – revised status 2020. Report 1926. Norwegian Institute for Nature Research. Trondheim, Norway. 84 pp.
  • Eisenhauer, Z. J., Christman, P. M., Matte, J.-M., Ardren, W. R., Fraser, D. J., and Grant, J. W. A. 2020. Revisiting the restricted movement paradigm: the dispersal of Atlantic salmon fry from artificial redds. Canadian Journal of Fisheries and Aquatic Sciences, 78(4): 493-503.
  • Fiske, P., Lund, R. A., and Hansen, L. P. 2006. Relationships between the frequency of farmed Atlantic salmon, Salmo salar L., in wild salmon populations and fish farming activity in Norway, 1989–2004. ICES Journal of Marine Science, 63(7): 1182-1189.
  • Fleming, I. A. 1996. Reproductive strategies of Atlantic salmon: ecology and evolution. Reviews in Fish Biology and Fisheries, 6: 379-416.
  • Fleming, I. A., Hindar, K., Mjolnerod, I. B., Jonsson, B., Balstad, T., and Lamberg, A. 2000. Lifetime success and interactions of farm salmon invading a native population. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267: 1517-1523.
  • Gilbey, J., Cauwelier, E., Sampayo, J., Matejusova, I., Allan, C., Graham, J., Stradmeyer, L., et al. 2018. Identification of the farm of origin of Atlantic salmon smolt escapees in a freshwater Scottish loch using single nucleotide polymorphic markers. ICES Journal of Marine Science, 75(6): 2182-2192.
  • Gilbey, J., Sampayo, J., Cauwelier, E., Malcolm, I. A., Millidine, K. J., Jackson, F. L., and D.J., M. 2021. A national assessment of the influence of farmed salmon escapes on the genetic integrity of wild Scottish Atlantic salmon populations. Scottish Marine and Freshwater Science Vol 12 No 12. Marine Scotland Science. 70 pp. DOI: 10.7489/12386-1
  • Glover, K. A., Solberg, M. F., McGinnity, P., Hindar, K., Verspoor, E., Coulson, M. W., Hansen, M. M., et al. 2017. Half a century of genetic interaction between farmed and wild Atlantic salmon: Status of knowledge and unanswered questions. Fish and Fisheries, 18: 890-927.
  • Glover, K. A., Wennevik, V., Hindar, K., Skaala, Ø., Fiske, P., Solberg, M. F., Diserud, O. H., et al. 2020. The future looks like the past: Introgression of domesticated Atlantic salmon escapees in a risk assessment framework. Fish and Fisheries, 21(6): 1077-1091.
  • Green, D. M., Penman, D. J., Migaud, H., Bron, J. E., Taggart, J. B., and McAndrew, B. J. 2012. The Impact of Escaped Farmed Atlantic Salmon (Salmo salar L.) on Catch Statistics in Scotland. PLoS ONE, 7(9): e43560.
  • Hansen, L. P. 2006. Migration and survival of farmed Atlantic salmon (Salmo salar L.) released from two Norwegian fish farms. ICES Journal of Marine Science, 63(7): 1211-1217.
  • Hansen, L. P., and Youngson, A. F. 2010. Dispersal of large farmed Atlantic salmon, Salmo salar, from simulated escapes at fish farms in Norway and Scotland. Fisheries Management and Ecology, 17(1): 28-32.
  • Iversen, M., Myhr, A. I., and Wargelius, A. 2016. Approaches for delaying sexual maturation in salmon and their possible ecological and ethical implications. Journal of Applied Aquaculture, 28(4): 330-369.
  • Jones, O. R., and Wang, J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3): 551-555.
  • Kalinowski, S. T. 2011. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity, 106(4): 625-632.
  • Karlsson, S., Diserud, O. H., Moen, T., and Hindar, K. 2014. A standardized method for quantifying unidirectional genetic introgression. Ecology and Evolution, 4(16): 3256-3263.
  • Kincaid, T. M., and Olsen, A. R. 2017. spsurvey: Spatial Survey Design and Analysis. R package version 5.3.0.
  • Madhun, A. S., Wennevik, V., Skilbrei, O. T., Karlsbakk, E., Skaala, Ø., Fiksdal, I. U., Meier, S., et al. 2017. The ecological profile of Atlantic salmon escapees entering a river throughout an entire season: diverse in escape history and genetic background, but frequently virus-infected. ICES Journal of Marine Science, 74(5): 1371-1381.
  • Mahlum, S., Vollset, K. W., Barlaup, B. T., Skoglund, H., and Velle, G. 2021. Salmon on the lam: Drivers of escaped farmed fish abundance in rivers. Journal of Applied Ecology, 58(3): 550-561.
  • Malcolm, I. A., Millidine, K. J., Jackson, F. L., Glover, R. S., and Fryer, R. J. 2020. The National Electrofishing Programme for Scotland (NEPS) 2019. Scottish Marine and Freshwater Science Vol 11 No 9. Marine Scotland Science. 57 pp.
  • Mobley, K. B., Aykanat, T., Czorlich, Y., House, A., Kurko, J., Miettinen, A., Moustakas-Verho, J., et al. 2021. Maturation in Atlantic salmon (Salmo salar, Salmonidae): a synthesis of ecological, genetic, and molecular processes. Reviews in Fish Biology and Fisheries, 31(3): 523-571.
  • Moe, K., Næsje, T. F., Haugen, T. O., Ulvan, E. M., Aronsen, T., Sandnes, T., and Thorstad, E. B. 2016. Area use and movement patterns of wild and escaped farmed Atlantic salmon before and during spawning in a large Norwegian river. Aquaculture Environment Interactions, 8: 77-88.
  • Naylor, R., Hindar, K., Fleming, I. A., Glodburg, R., Williams, S., Volpe, J., Whoriskey, F., et al. 2005. Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. Bioscience, 55: 427-437.
  • Nielsen, E. E., Bach, L. A., and Kotlicki, P. 2006. hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Molecular Ecology Notes, 6(4): 971-973.
  • Økland, F., Heggberget, T. G., and Jonsson, B. 1995. Migratory behaviour of wild and farmed Atlantic salmon (Salmo salar) during spawning. Journal of Fish Biology, 46(1): 1-7.
  • Pritchard, J. K., Stephens, M., and Donnelly, P. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2): 945-959.
  • R Core Team 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Rivera, P., Gallardo, J., and Vasemägi, A. 2021. Sexual Maturation in Farmed Atlantic Salmon (Salmo salar): A Review. In Salmon Aquaculture. Ed. by Q. Lu. IntechOpen Limited, Nanchang University, China.
  • Saegrov, H., Hindar, K., Kalas, S., and Lura, H. 1997. Escaped farmed Atlantic salmon replace the original salmon stock in the River Vosso, western Norway. ICES Journal of Marine Science, 54: 1166-1172.
  • Skaala, Ø., Glover, K. A., Barlaup, B. T., Svåsand, T., Besnier, F., Hansen, M. M., and Borgstrøm, R. 2012. Performance of farmed, hybrid, and wild Atlantic salmon (Salmo salar) families in a natural river environment. Canadian Journal of Fisheries and Aquatic Sciences, 69(12): 1994-2006.
  • Solberg, M. F., Zhang, Z., and Glover, K. A. 2015. Are farmed salmon more prone to risk than wild salmon? Susceptibility of juvenile farm, hybrid and wild Atlantic salmon Salmo salar L. to an artificial predator. Applied Animal Behaviour Science, 162: 67-80.
  • Stevens, D. L., and Olsen, A. R. 2004. Spatially Balanced Sampling of Natural Resources. Journal of the American Statistical Association, 99(465): 262-278.
  • Thorpe, J. E. 1994. Reproductive strategies in Atlantic salmon, Salmo salar L. Aquaculture Research, 25: 77-87.
  • Thorstad, E. B., Heggberget, T. G., and Økland, F. 1998. Migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., before, during and after spawning in a Norwegian river. Aquaculture Research, 29(6): 419-428.
  • Walsh, P. S., Metzger, D. A., and Higuchi, R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10(4): 506-513.
  • Webb, J. H., Hay, D. W., Cunningham, P. D., and Youngson, A. F. 1991. The spawning behaviour of escaped farmed and wild adult Atlantic salmon (Salmo salar L.) in a northern Scottish river. Aquaculture, 98: 97-110.
  • Wringe, B. F., Jeffery, N. W., Stanley, R. R. E., Hamilton, L. C., Anderson, E. C., Fleming, I. A., Grant, C., et al. 2018. Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Communications Biology, 1(1): 108.



Back to top