

Pesticide Usage in Scotland

A National Statistics Publication for Scotland

Arable crops and Potato stores 2022

Pesticide Usage in Scotland

Arable Crops 2022

C. Davis, C. MacLeod, J. Wardlaw and A. Robertson

SASA

Roddinglaw Road, Edinburgh, Scotland, EH12 9FJ

Contents

Executive summary Introduction	
Structure of report and how to use these statistics	
General trends	
Crop area	
Pesticide usage	6
2022 Pesticide usage	13
Winter barley	13
Spring barley	15
Winter wheat	17
Spring wheat	19
Winter oats	21
Spring oats	23
Winter rye	25
Oilseeds	27
Seed potatoes	29
Ware potatoes	31
Legumes	33
Appendix 1 – Estimated application tables	35
Appendix 2 – Survey statistics	
Census and sample information	
Response rates	
Financial burden to farmers	
Appendix 3 – Definitions and notes	
Appendix 4 – Survey methodologySampling and data collection	
Raising factors	
Changes from previous years	
Data quality assurance	
Main sources of bias	
Appendix 5 – Standard errors	
Acknowledgements	
References	

List of figures and tables

Figure 1	Area of cereal crops grown in Scotland 2018-20224
Figure 2	Area of oilseeds, potatoes and legumes grown in Scotland 2018-20224
Figure 3	Arable crop areas 2022 (percentage of total area)5
Figure 4	Regional distribution of arable crops in Scotland 20225
Figure 5	Area of arable crops treated with major pesticide groups in
J	Scotland 2018-20226
Figure 6	Weight of major pesticide groups applied to arable crops in
J	Scotland 2018-20227
Figure 7	Number of pesticide treated hectares (formulations) per hectare
Ū	of crop grown in Scotland 2018-20227
Figure 8	Weight of pesticide applied per hectare of crop grown in Scotland
Ü	2018-20228
Figure 9	Use of pesticide on arable crops (percentage of total area treated
Ū	with formulations) – 20229
Figure 10	Use of pesticides on arable crops (percentage of total quantity of
Ü	active substances applied) – 202210
Figure 11	Use of pesticides on winter barley (percentage of total area
Ü	treated with formulations) – 202214
Figure 12	
Ü	treated with formulations) – 2022
Figure 13	Use of pesticides on winter wheat (percentage of total area
3	treated with formulations) – 202218
Figure 14	
J -	treated with formulations) – 202220
Figure 15	Use of pesticides on winter oats (percentage of total area treated
9	with formulations) – 202222
Figure 16	Use of pesticides on spring oats (percentage of total area treated
J	with formulations) – 202224
Figure 17	
J -	with formulations) – 202226
Figure 18	,
J	with formulations) – 202228
Figure 19	Use of pesticides on seed potatoes (percentage of total area
J	treated with formulations) – 202230
Figure 20	,
9	treated with formulations) – 202232
Figure 21	Use of pesticides on legumes (percentage of total area treated
J -	with formulations) – 202234
Figure 22	
9	
- 4	
Table 1	Percentage of each crop treated with pesticides and mean number
T.1. 0	of spray applications – 2022
Table 2	Cereal seed treatment formulations – 2022
Table 3	Cereal insecticide and molluscicide formulations - 2022
Table 4	Cereal fungicide and sulphur formulations - 2022
Table 5	Cereal herbicide/desiccant and growth regulator formulations –
	202243

Table 6	Oilseeds seed treatment formulations - 2022	50
Table 7	Oilseeds insecticide and molluscicide formulations - 2022	.50
Table 8	Oilseeds fungicide and fungicide/growth regulator formulations -	
	2022	51
Table 9	Oilseeds herbicide/desiccant and growth regulator formulations -	•
	2022	
Table 10	Potato seed treatment formulations - 2022	53
Table 11	Potato insecticide and molluscicide formulations - 2022	54
Table 12	Potato fungicide formulations - 2022	55
Table 13	Potato herbicide/desiccant and growth regulator formulations -	-
	2022	57
Table 14	Legume insecticide formulations - 2022	58
Table 15	Legume fungicide formulations - 2022	
Table 16	Legume herbicide/desiccant formulations - 2022	59
Table 17	Active substances encountered in the arable survey for the firs	t
	time in 2022	
Table 18	Principal active substances by area treated	
Table 19	Principal active substances by weight	
Table 20	Total arable crop, comparison with previous years	.64
Table 21	Cereals, comparison with previous years	.65
Table 22	Potatoes comparison with previous years	
Table 23	Oilseeds, comparison with previous years	
Table 24	Regional distribution of arable crops in 2022	
Table 25	Distribution of arable sample - 2022	.70
Table 26	Sample area - 2022	
Table 27	SAF area - 2022	
Table 28	Raising factors - 2022	
Table 29	First and second adjustment factors - 2022	72
Table 30	Response rate	
Table 31	Relative standard errors - 2022	82

Potato store contents

Executive summary	86
Introduction	
Structure of report and how to use these statistics	
General trends	88
Scottish potato storage	
Pesticide usage	90
2022 Potato storage and pesticide usage	93
Seed potatoes	
Ware potatoes	95
Appendix 1 – Estimated application tables	97
Appendix 2 - Survey statistics	
Census and sample information	100
Financial burden to farmers	102
Appendix 3 - Definitions and notes	103
Appendix 4 – Survey methodology	
Sampling and data collection	
Raising factors	106
Changes from previous years	107
Acknowledgements	109
References	

List of figures and tables

Figure 1	Estimated total potato storage in Scotland 2018-2022	80
Figure 2	Percentage of stored potatoes treated with pesticides in Scot	land
- : 0	2018-2022	
Figure 3	Percentage of stored seed potatoes treated with a pesticide in	
	Scotland 2012-2022	
Figure 4	Percentage of stored ware potatoes treated with a pesticide in	n
	Scotland 2012-2022	92
Figure 5	Seed potato storage by type – 2022	94
Figure 6	Ware potato storage by type – 2022	
Figure 7	Land use regions of Scotland	
Table 1	Potatoes stored, and proportion treated, by storage type – 2022	297
Table 2	Potato storage treatment formulations by storage type - 2022	98
Table 3	Potato storage treatment active substances – 2022	
Table 4	Potato cultivation and storage, comparison with previous survey	
	2022	
Table 5	Percentage of stored potatoes treated, comparison with previou	
i abic 5	surveys – 2022	
Table 6	Distribution of sampled potato stores - 2022	
Table 7	Distribution of stored potatoes in sample - 2022	
Table 8	Distribution of sample areas – 2022	
Table 9	Distribution of SAF areas – 2022	
Table 10	Raising factors – 2022	
Table 11	First adjustment factors for ware potatoes – 2022	.101
Table 12	Second adjustment factors – 2022	.101

Executive summary

This report presents information from a survey of pesticide use on arable crops grown in Scotland. The survey period covers the 2022 growing season, from post-harvest pesticide applications in 2021 through to harvest in 2022. The crop groups surveyed included cereals, oilseeds, potatoes and legumes.

The estimated area of arable crops grown in Scotland in 2022 was ca. 487,000 hectares. Spring barley accounted for 48 per cent of the arable crop area, wheat 22 per cent, winter barley nine per cent, oilseeds seven per cent, potatoes six per cent and spring oats four per cent. Winter oats, winter rye, triticale and legumes together accounted for the remaining four per cent.

Data were collected from a total of 332 holdings, representing eight per cent of the total arable crop area grown in Scotland. Ratio raising was used to produce estimates of national pesticide use from the sample data.

The estimated total area of arable crops treated with a pesticide formulation was ca. 4,685,000 hectares (± three per cent Relative Standard Error, RSE) with a combined weight of ca. 1,200 tonnes (± four per cent RSE). Overall, pesticides were applied to 97 per cent of the arable crop area. Fungicides were applied to 94 per cent of the crop area, herbicides/desiccants to 93 per cent, growth regulators to 56 per cent, insecticides to 19 per cent and molluscicides to eight per cent. Pesticide treatments were applied to 82 per cent of seed in this survey.

Overall, use of pesticides in 2022 has remained broadly similar to the previous two arable surveys. Taking into account changes in crop area, the 2022 total pesticide treated area was two per cent lower than that reported in 2020 and one per cent higher than 2018. The weight of pesticide applied to arable crops in 2022 was 12 per cent lower than in 2020 and eight per cent lower than 2018.

Fungicide use by area treated increased three per cent while the weight applied decreased six per cent compared to 2020 levels. Herbicide/desiccant use decreased by eight and 19 per cent by area treated and by weight applied respectively when compared to 2020. The area treated with insecticides/ nematicides decreased by seven per cent from 2020, while the weight applied decreased by 50 per cent. Molluscicide use decreased 28 and 29 per cent by area treated and by weight respectively when compared to 2020. Seed treatment use decreased eight per cent by area treated and the weight applied decreased 17 per cent from 2020. The area treated in 2020 with growth regulators increased 16 per cent while there was no change in the weight applied from 2020 levels.

In terms of area treated, the most commonly used foliar fungicide active substance was prothioconazole. The most used herbicide and insecticide was fluroxypyr and lambda-cyhalothrin respectively. The most commonly used seed treatment active substance was fludioxonil. The herbicide thiencarbazone-methyl and the fungicides fenpicoxamid and laminarin were recorded for the first time in this survey.

Introduction

The Scottish Government (SG) is required by legislation⁽¹⁾⁽²⁾ to carry out post-approval surveillance of pesticide use. This is conducted by the Pesticide Survey Unit at SASA, a division of the Scottish Government's Agriculture and Rural Economy Directorate.

This survey is part of a series of annual reports which are produced to detail pesticide usage in Scotland for arable, vegetable and soft fruit crops on a biennial basis and for fodder and forage crops every four years. The Scottish survey data are incorporated with England, Wales, and Northern Ireland data to provide estimates of annual UK-wide pesticide use. Information on all aspects of pesticide usage in the United Kingdom as a whole may be obtained from the Pesticide Usage Survey Team at Fera Science Ltd, Sand Hutton, York, or visit the Fera website.

An Accredited Official Statistics Publication for Scotland

These statistics are accredited official statistics. The Office for Statistics Regulation has independently reviewed and accredited these statistics as complying with the standards of trustworthiness, quality, and value in the Code of Practice for Statistics.

The Scottish Pesticide Usage reports have been <u>accredited official statistics</u> <u>since October 2014</u>.

Accredited official statistics are called National Statistics in the <u>Statistics and Registration Service Act 2007</u>.

Scottish Government statistics are regulated by the Office for Statistics Regulation (OSR). OSR sets the standards of trustworthiness, quality and value in the <u>Code of Practice for Statistics</u> that all producers of official statistics should adhere to.

As well as working closely with Scottish Government statisticians, SASA receive survey specific statistical support from Biomathematics and Statistics Scotland (BioSS).

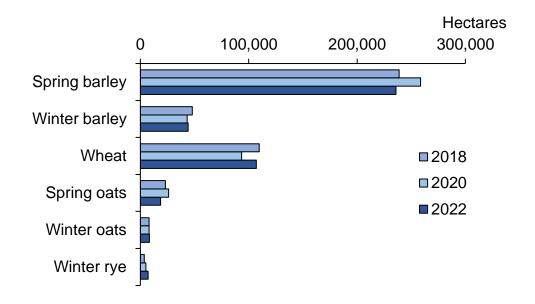
All reports are produced according to a published timetable. For further information in relation to Pesticide Survey Unit publications and their compliance with the code of practice please refer to the pesticide usage survey section of the SASA website. The website also contains other useful documentation such as privacy and revision policies, user feedback and detailed background information on survey methodology and data uses.

Additional information regarding pesticide use can be supplied by the Pesticide Survey Unit. Please email psu@sasa.gov.scot or visit our website.

Structure of report and how to use these statistics

This report is intended to provide data in a useful format to a wide variety of data users. The general trends section provides commentary on recent changes in survey data and longer-term trends. The pesticide usage section summarises usage on all arable crops in 2022. Appendix 1 presents all estimated pesticide usage in two formats; area and weight of formulations by crop. The area and weight of active substances by crop data, which were previously published in this report, are now published as supplementary data in Excel format. These different measures are provided to satisfy the needs of different data users (see Appendix 3 for examples). Appendix 2 summarises survey statistics including the Single Application Farm (SAF, in absence of June 2022 Census) and holding information, raising factors and survey response rates. Appendix 3 defines many of the terms used throughout the report. Appendix 4 describes the methods used during sampling, data collection and analysis as well as measures undertaken to avoid bias and reduce uncertainty. Any changes in method from previous survey years are also explained.

It is important to note that the figures presented in this report are produced from surveying a sample of holdings rather than a census of all the holdings in Scotland. Therefore, the figures are estimates of the total pesticide use for Scotland and should not be interpreted as exact. To give an indication of the precision of estimates, the report includes relative standard errors. A full explanation of standard errors can be found in Appendix 5.


General trends

Crop area

The estimated area of arable crops grown in 2022 was 487,389 hectares (Table 28). This represents a two per cent decrease from 2020⁽³⁾ and no change from 2018⁽⁴⁾ (see Appendix 4 for changes in methodology between years). Since the last survey, areas of winter barley, wheat, winter oats, winter rye, oilseeds and legumes increased (3, 15, 6, 40, 15 and 23 per cent respectively), while spring barley, spring oats, seed potatoes and ware potatoes have decreased (9, 28, 1 and 6 per cent respectively) (Table 28, Figures 1 and 2).

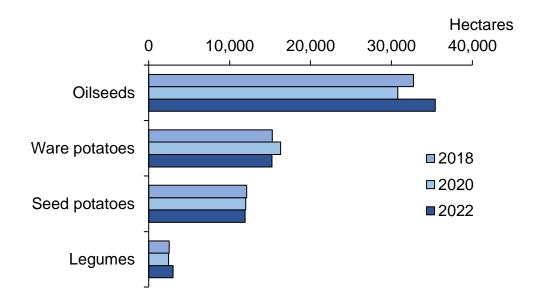

In 2022, cereals accounted for 87 per cent of the arable area (48 per cent spring barley, 22 per cent wheat, nine per cent winter barley, four per cent spring oats, two per cent winter oats and one per cent rye). The remaining area consisted of oilseeds, potatoes and legumes (accounting for 7, 6 and 1 per cent respectively, Figure 3). The largest area of arable crops was in the Aberdeen region, followed by Angus, Tweed Valley and Moray Firth (Figure 4).

Figure 1 Area of cereal crops grown in Scotland 2018-2022

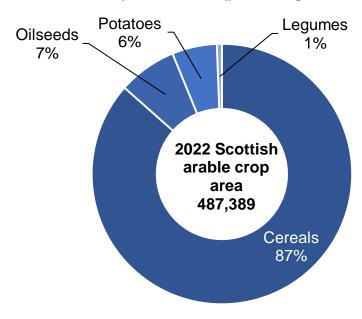

Note: triticale has been excluded as this represents < 500 ha.

Figure 2 Area of oilseeds, potatoes and legumes grown in Scotland 2018-2022

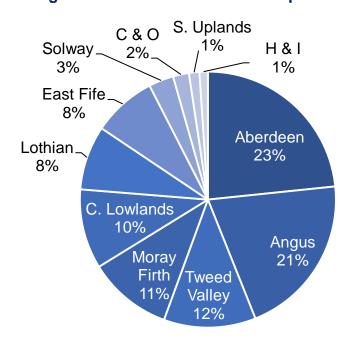
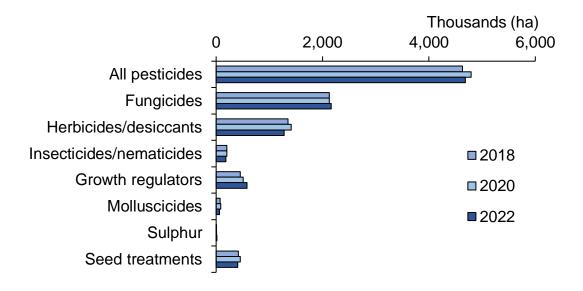

Note: oilseeds includes linseed (2022 only), winter and spring oilseed rape; legumes include field beans and dry harvest peas.

Figure 3 Arable crop areas 2022 (percentage of total area)

Note: cereals include winter and spring barley, wheat, oats, winter rye and triticale; potatoes includes seed and ware potatoes; oilseeds includes linseed, winter and spring oilseed rape; legumes includes field beans and dry harvest peas.

Figure 4 Regional distribution of arable crops in Scotland 2022

Note: H & I = Highlands and Islands, S. Uplands = Southern Uplands, C & O = Caithness and Orkney and C. Lowlands = Central Lowlands.


Pesticide usage

In 2022, as in 2020, the majority of arable crops (97 per cent) received a pesticide treatment.

Winter and spring barley, winter and spring wheat, winter oats, winter rye, oilseeds, seed and ware potatoes had the highest overall proportion of crop treated with a pesticide (between 96 and 100 per cent Table 1). Legumes and spring oats had lower proportions of treated crop area (91 and 83 per cent respectively). The average number of sprays applied to treated arable land, excluding seed treatments was 4.1, the same as recorded in 2020. Ware potatoes and seed potatoes received the highest average number of sprays (13.7 and 10.2 respectively), while spring barley, spring oats and winter rye received the lowest (2.5, 2.7 and 3.2 respectively, Table 1). These figures only apply to the treated area of crops.

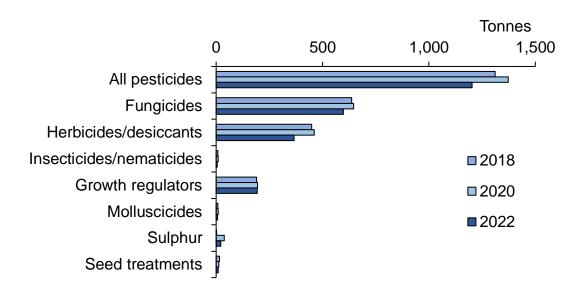

It is estimated that the area of arable crops treated with a pesticide formulation in 2022 was ca. 4,685,000 hectares compared with ca. 4,793,000 hectares in 2020 and ca. 4,632,000 hectares in 2018 (Table 21, Figure 5). This represents a decrease of two per cent since 2020 and is very similar to 2018.

Figure 5 Area of arable crops treated with major pesticide groups in Scotland 2018-2022

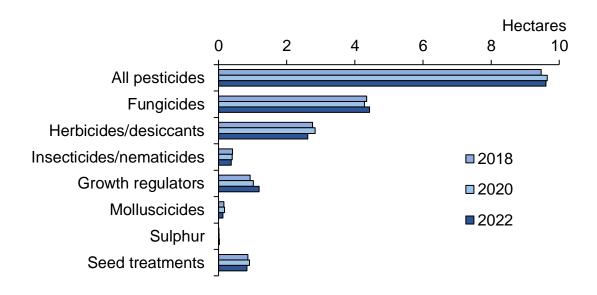
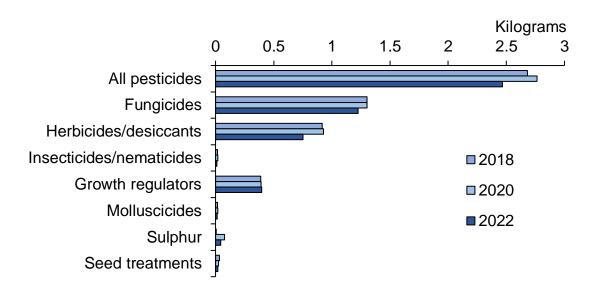

In terms of weight of pesticide applied, it is estimated ca. 1,200 tonnes were applied in 2022, representing a decrease of 12 per cent from 2020 and a decrease of eight per cent from 2018 (Table 21, Figure 6).

Figure 6 Weight of major pesticide groups applied to arable crops in Scotland 2018-2022

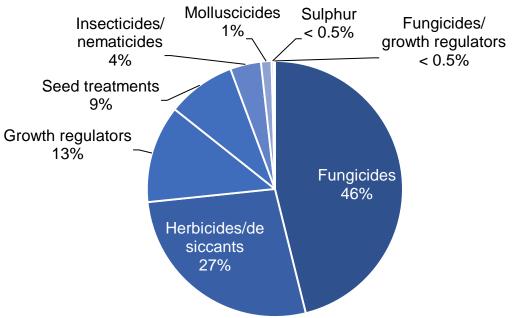
In order to make accurate comparisons between the 2022 data and the data collected in previous surveys, it is important to take into account the differences in crop area between survey years. Therefore, the number of treated hectares per hectare of crop grown and the total weight of pesticide used per hectare of crop grown were calculated. Once crop area is taken into account, there was no change from 2020 to 2022 and a two per cent increase from 2018 to 2022 in terms of the total pesticide treated area per area of crop grown (Figure 7).


Figure 7 Number of pesticide treated hectares (formulations) per hectare of crop grown in Scotland 2018-2022

In terms of quantity of pesticides used per hectare of crop grown, there was a decrease of 11 per cent from 2020 to 2022 and a decrease of eight per cent from 2018 to 2022 (Figure 8).

Overall, winter crops for harvest in 2022 established well and a dry spring reduced disease pressure. Spring crops went in to cool, dry soils and there were some issues with emergence but establishment was usually good. Soils were very dry going into summer but rainfall in June and July went some way to alleviating this and crop yields were generally good despite being capped by earlier low rainfall. Pest and disease levels were reduced by the dry spring, but increased in wetter summer conditions⁽⁵⁾.

Figure 8 Weight of pesticide applied per hectare of crop grown in Scotland 2018-2022

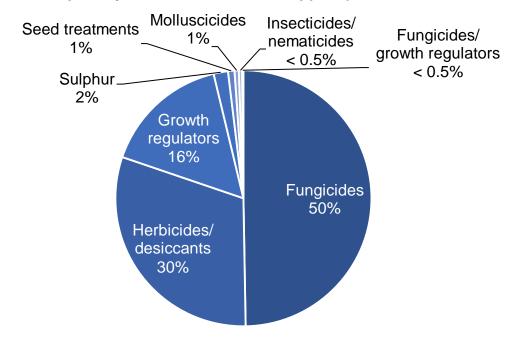


As in previous surveys in this series, fungicides were the most frequently used pesticides on arable crops, followed by herbicides/desiccants (Figure 5). In 2022, fungicides accounted for 46 per cent of the total pesticide treated area and 50 per cent of the total weight of active substances applied (Figures 9 and 10). When changes in crop area are taken into account, there was a three per cent increase in area treated with fungicides from 2020 to 2022, and a two per cent increase from 2018 to 2022 (Figure 7). The weight of fungicides applied per hectare decreased six per cent from both 2020 and 2018 to 2022 (Figure 8). The slight increase in treated area but decrease in weight applied may have been influenced by the withdrawal of chlorothalonil (May 2020), which would have been part of early programmes that year. To achieve the same degree of efficacy from programmes in 2022, other fungicidal inputs will have increased, including increased use of folpet, which is applied at lower rates than chlorothalonil, contributing to the decrease in weight of fungicide applied from 2020.

In 2022, herbicides/desiccants accounted for 27 per cent of the total pesticide treated area and 30 per cent of the total weight of active substances applied (Figures 9 and 10). When changes in crop area are taken into account, there

was an eight per cent decrease in the area treated with herbicides/desiccants from 2020 to 2022 and a five per cent decrease from 2018 to 2022. The weight of herbicides/desiccants applied decreased 19 per cent from 2020 to 2022 and decreased 18 per cent from 2018 to 2022 (Figures 7 and 8). Prolonged dry conditions in spring delayed weed germination⁽⁶⁾, and weed levels continued to be fairly low as a consequence of the dry weather continuing through the summer months^(7,8). The area treated and weight applied of pre-harvest glyphosate decreased 34 and 35 per cent respectively in 2022 compared to 2020, likely due to the hot, dry weather at harvest time rapidly ripening crops naturally^(7,8).

Figure 9 Use of pesticide on arable crops (percentage of total area treated with formulations) – 2022



As was the case in 2020, insecticides (including nematicides) accounted for four per cent of the total pesticide treated area but less than 0.5 per cent of the total weight of active substances applied (Figures 9 and 10). When changes in crop area are taken into account, there was a seven per cent decrease in area treated with insecticide from 2020 to 2022 and a 10 per cent decrease from 2018 to 2022 (Figure 7). The weight of insecticides applied per hectare of crop grown decreased 50 per cent from 2020 to 2022 and decreased 42 per cent from 2018 to 2022 (Figure 8). This decrease in weight of insecticides applied since 2020 is primarily influenced by the withdrawal of oxamyl (final use December 2020) which was previously applied at high rates at planting of potato crops for the control of nematodes. The decline in insecticide use may also have been influenced by the withdrawal of thiacloprid in February 2021, which was previously applied mainly as a foliar spray to potato crops for aphid control.

Molluscicides accounted for one per cent of the total pesticide treated area and of the total weight of active substances applied (Figures 9 and 10). When changes in crop area are taken into account, there was a 28 per cent

decrease in area treated from 2020 to 2022 and a 17 per cent decrease from 2018 to 2022 (Figure 7). The weight of molluscicides applied per hectare of crop grown decreased by 29 per cent from 2020 to 2022 and by 26 per cent from 2018 to 2022. The decrease in area treated and weight applied of molluscicides since 2020 is influenced by the withdrawal of the active substance metaldehyde in March 2022, which meant it was not available for use on potato crops during the 2022 season. Metaldehyde was applied to winter cereal and oilseed rape crops planted late 2021 and none after March 2022. Notably, there was also a 13 and 24 per cent decrease in the area treated and weight applied of ferric phosphate, the only approved molluscicide active substance, from 2022 to 2020. Favourable autumn 2021 and spring 2022 crop growing conditions likely reduced slug pressure, allowing emerging crops to advance quickly^(9,10,11). This is in contrast to the 2020 season, where heavy autumnal rainfall in 2019 favoured slugs, and growers were reliant on slug pellets for slug management in oilseed rape and wheat during the autumn^(12,13). Wet weather during summer 2020 also increased slug pressure on potato crops⁽¹⁴⁾.

Figure 10 Use of pesticides on arable crops (percentage of total quantity of active substances applied) – 2022

Growth regulators accounted for 13 per cent of the total pesticide treated area and 16 per cent of the total weight of active substances applied (Figures 9 and 10). When changes in crop area are taken into account, the area treated increased by 16 per cent from 2020 to 2022 and by 28 per cent from 2018 to 2022 (Figure 7). The weight of growth regulators applied per hectare of crop grown increased by one per cent from 2020 to 2022 and increased two per cent from 2018 to 2022 (Figure 8). As crops established well in 2022 and had good potential from early in the season, preventing lodging was a priority for farmers (Prof. Fiona Burnett, pers. comm).

Seed treatments accounted for nine per cent of the total pesticide treated area and one per cent of the total weight of active substances applied (Figures 9 and 10). When changes in crop area are taken into account, there was an eight per cent decrease in area treated between 2020 and 2022 and a three per cent decrease between 2018 and 2022 (Figure 7). The weight of seed treatments applied per hectare decreased 17 per cent from 2020 and by 38 per cent since 2018 (Figure 8). The decrease in the area and weight of seed treatments applied may relate to the withdrawal of some seed treatment formulations since the previous survey, including thiram which was the principal seed treatment on winter oilseed rape in 2020 (withdrawn January 2020) and penflufen and pencycuron which were common seed treatments on potatoes in 2020 (withdrawn June 2021 and March 2020 respectively).

Sulphur accounted for less than 0.5 per cent of the total pesticide treated area and two per cent of the total weight of active substances applied (Figures 9 and 10). When changes in crop area are taken into account, there was a 51 per cent increase in area treated from 2020 to 2022 and a 775 per cent increase from 2018 to 2022 (Figure 7). The quantity of sulphur applied per hectare of crop grown decreased by 44 per cent from 2020 to 2022 and increased 696 per cent from 2018 to 2022 (Figure 8). Sulphur, applied primarily to cereals, is a multisite alternative to fungicides and was used to control mildew, septoria and rhynchosporium. Spring barley and winter wheat accounted for 87 per cent of the sulphur treated area (43 and 44 per cent respectively) and 89 per cent of weight applied (45 and 44 per cent respectively) in 2022.

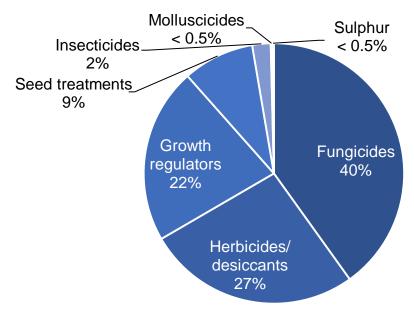
Three active substances were recorded for the first time in the 2022 arable survey (Table 18). These included the herbicide thiencarbazone-methyl (for brome control in winter wheat) and the fungicides fenpicoxamid (for disease control in cereals) and laminarin (a plant health elicitor which protects crops from fungal attack by activating the crops own defence systems and is one of the first biopesticides authorised for control of septoria and reduction of powdery mildew in winter wheat).

Whilst overall use of pesticides in 2022 has remained broadly similar to the previous two arable surveys, some individual active substances have exhibited considerable change. Declines or gaps in azole efficacy have influenced the use of a number of fungicides. The most effective remaining azole after withdrawal of the single-site fungicide epoxiconazole (withdrawn October 2021) was prothioconazole, the efficacy of which has declined against septoria and has always been slightly lower against rusts. This may have influenced increased use of the new active substance mefentrifluconazole (increased by 220 per cent in terms of area treated and 237 per cent by weight compared to 2020). The withdrawal of the multi-site chlorothalonil in May 2020 likely influenced increased use of the multi-site fungicide folpet (69 per cent increase of area treated and 80 per cent by weight compared to 2020 (Tables 19 and 20). The area treated and weight applied with the fungicide benzovindiflupyr also increased by 107 and 104 per cent respectively, partly influenced by crop composition, with greater areas of rye and field beans grown in 2022. In contrast, use of the potato fungicide cymoxanil decreased by 37 per cent by area treated and 33 per cent by weight applied. The principal cymoxanil formulation in 2020 was

cymoxanil/mancozeb. Use of this formulation was significantly lower in 2022 possibly due to supply issues in GB following the withdrawal of mancozeb in the EU in January 2021. Use of the fungicide prochloraz decreased by 57 per cent in area treated and 55 per cent in weight applied, influenced by product availability. A product containing prochloraz/proquinazid/tebuconazole was applied to 7,500 ha of cereals in 2020 but its use was withdrawn on barley and oats in July 2020.

While the overall area treated and weight applied of seed treatments decreased, the increased use of imazalil and ipconazole (123 and 128 per cent of area treated and 125 and 137 per cent by weight applied) may have been due a decrease in the overall number of seed treatments available. In addition, the area treated and weight applied of glyphosate decreased 34 and 35 per cent respectively in 2022 compared to 2020, this is likely to have been influenced by the hot, dry weather pre-harvest, rapidly ripening crops and naturally reducing the need for a desiccant. Use of the herbicide mecopropalso decreased by 44 per cent for area treated and 42 per cent by weight applied possibly due to the dry conditions and lower weed pressure in 2022. Finally, the withdrawal of linuron (June 2018) and diquat (February 2020) have will have led to an increase in use of other active substances such as the herbicide aclonifen, predominantly on ware potatoes, with an overall increase of 134 per cent in both area treated and weight applied. Aclonifen was a new active introduced in 2019.

2022 Pesticide usage

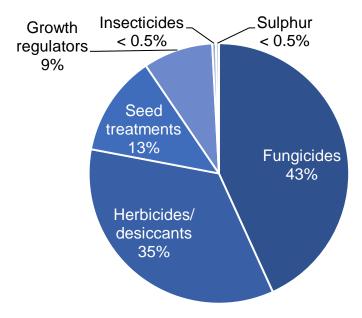

Winter barley

- An estimated 44,173 hectares of winter barley were grown in Scotland in 2022 (based on the Single Application Form (SAF) 2022 – see changes from previous years section for further explanation), an increase of three per cent since 2020
- 97 per cent of the crop was treated with a pesticide (see Figure 11 for types of pesticides used)
- Pesticides were applied to 434,175 treated hectares
- There were 124,919 kilograms of pesticide applied in total (see summary table)
- Winter barley received on average four pesticide sprays (Table 1).
 These sprays included 2.5 fungicide applications (applied to 97 per cent of crop area), 2.1 herbicide/desiccant applications (applied to 89 per cent), 1.8 applications of growth regulators (applied to 87 per cent) and one application of insecticide (applied to 22 per cent)
- The most common varieties encountered were LG Mountain and SY Kingsbarn (15 per cent each)
- The average reported yield was 8.4 t/ha

Summary of pesticide use on winter barley:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	174,124	42,820	97	Folpet (45,476)
Herbicides/ desiccants	115,115	44,296	89	Glyphosate (20,101)
Insecticides	9,911	45	22	Esfenvalerate (5,898)
Growth regulators	94,811	36,406	87	Chlormequat (35,271)
Molluscicides	858	98	2	Ferric phosphate (561)
Sulphur	846	605	2	[z]
Seed treatments	38,510	648	87	Fluopyram/ prothioconazole/ tebuconazole (15,929)
All pesticides	434,175	124,919	97	

Figure 11 Use of pesticides on winter barley (percentage of total area treated with formulations) – 2022

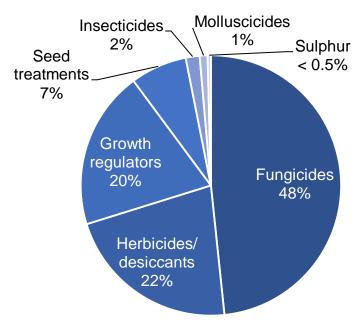

Spring barley

- An estimated 235,813 hectares of spring barley were grown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), representing a decrease of nine per cent since 2020
- Ninety-seven per cent of the crop was treated with a pesticide (see Figure 12 for types of pesticide used)
- Pesticides were applied to 1,569,292 treated hectares
- There were 290,436 kilograms of pesticide used in total on the crop (see summary table)
- The spring barley crop received on average 2.5 pesticide applications (Table 1). These included 1.8 fungicide applications and 1.5 herbicide/desiccant applications (applied to 93 per cent of the crop area for both groups) and 1.4 applications of growth regulators (applied to 42 per cent)
- Laureate was the most common variety, accounting for 62 per cent of the sample area, followed by LG Diablo at 13 per cent
- The average reported yield was 7.1 t/ha

Summary of pesticide use on spring barley:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	677,963	157,229	93	Folpet (201,091)
Herbicides/ desiccants	545,815	99,592	93	Metsulfuron-methyl/ thifensulfuron-methyl (89,476)
Insecticides	7,162	35	3	Lambda-cyhalothrin (7,162)
Growth regulators	135,898	20,756	42	Trinexapac-ethyl (45,314)
Sulphur	5,825	9,377	2	[z]
Seed treatments	196,629	3,448	83	Imazalil/ipconazole (88,800)
All pesticides	1,569,292	290,436	97	

Figure 12 Use of pesticides on spring barley (percentage of total area treated with formulations) – 2022


Winter wheat

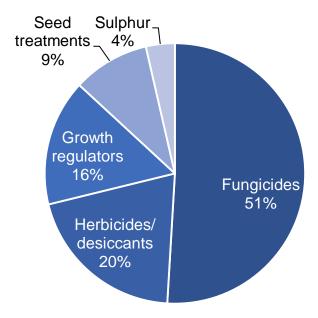
- An estimated 105,827 hectares of winter wheat were grown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), representing an increase of 16 per cent since 2020
- Ninety-eight per cent of the crop was treated with a pesticide (see Figure 13 for types of pesticide used)
- Pesticides were applied to 1,454,363 treated hectares
- There were 376,930 kilograms of pesticide used in total on the crop (see summary table)
- The winter wheat crop received on average 5.1 pesticide applications (Table 1). These included 3.5 fungicide applications and 2.3 herbicide/desiccant applications (applied to 95 per cent and 94 per cent of the crop area respectively), two applications of growth regulators (applied to 93 per cent); molluscicides and insecticides received 1.2 and one application(s) (applied to 11 and 23 per cent of the area respectively)
- LG Skyscraper was the most common variety, accounting for 42 per cent of the sample area, followed by KWS Barrel at 11 per cent
- The average reported yield was 9.4 t/ha

Summary of pesticide use on winter wheat:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	702,982	176,352	95	Folpet (155,068)
Herbicides/ desiccants	317,876	83,620	94	Diflufenican/flufenacet (36,009)
Insecticides	25,133	146	23	Lambda-cyhalothrin (14,929)
Growth regulators	286,067	104,287	93	Trinexapac-ethyl (114,339)
Molluscicides	14,265	1,459	11	Ferric phosphate (13,399)
Sulphur	5,847	9,315	5	[z]
Seed treatments	102,194	1,751	91	Fludioxonil (51,891)
All pesticides	1,454,363	376,930	98	

Figure 13 Use of pesticides on winter wheat (percentage of total area treated with formulations) – 2022

Spring wheat

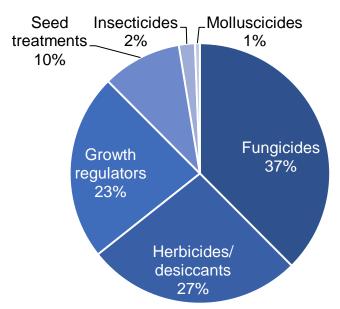

This crop was not recorded separately in SAF data. Based upon the proportions of spring and winter wheat encountered in the survey it was estimated that 1,291 hectares of spring wheat were grown in Scotland in 2022, representing a decrease of 43 per cent since 2020.

- Ninety-nine per cent of the crop was treated with a pesticide (see Figure 14 for types of pesticides used)
- Pesticides were applied to 12,478 treated hectares
- There were 2,890 kilograms of pesticide used in total on the crop (see summary table below)
- The spring wheat crop received on average 3.5 pesticide applications (Table 1). These included 2.7 fungicide applications and 1.4 herbicide/desiccant applications (applied to 92 per cent of the crop area for both groups) and 1.2 applications of growth regulators (applied to 92 per cent)
- The most common variety grown, accounting for 35 per cent of the sample area, was Mulika followed by Faller at 30 per cent
- The average reported yield was 6.9 t/ha

Summary of pesticide use on spring wheat:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	6,356	1,030	92	Tebuconazole (1,035)
Herbicides/ desiccants	2,525	547	92	Florasulam/ halauxifen-methyl (437)
Growth regulators	1,959	581	92	Trinexapac-ethyl (1,140)
Sulphur	448	718	7	[z]
Seed treatments	1,190	15	92	Fludioxonil (989)
All pesticides	12,478	2,890	99	

Figure 14 Use of pesticides on spring wheat (percentage of total area treated with formulations) – 2022

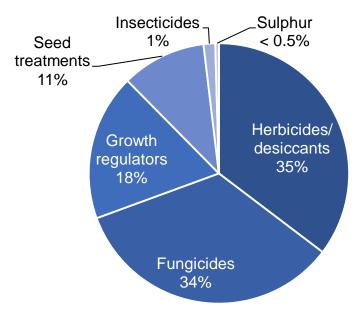

Winter oats

- An estimated 8,436 hectares of winter oats were gown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), an increase of six per cent since 2020
- Ninety-eight per cent of the crop was treated with a pesticide (see Figure 15 for types of pesticides used)
- Pesticides were applied to 73,503 treated hectares
- There were 14,947 kilograms of pesticide applied in total (see summary table)
- Winter oats received on average 4.2 pesticide sprays (Table 1). These sprays included 2.5 fungicide applications and 2.3 herbicide/desiccant applications (applied to 96 per cent and 91 per cent of the crop area respectively), 1.5 applications of growth regulators (applied to 93 per cent) and one application of insecticides (applied to 17 per cent of the crop area)
- The most common variety encountered was Dalguise accounting for 51 per cent of the sample area followed by Gerald at 22 per cent
- The average reported yield was 7.9 t/ha

Summary of pesticide use on winter oats:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	27,591	2,887	96	Prothioconazole (10,097)
Herbicides/ desiccants	19,695	4,598	91	Diflufenican/flufenacet (5,670)
Insecticides	1,456	6	17	Lambda-cyhalothrin (1,456)
Growth regulators	17,048	7,341	93	Chlormequat (7,194)
Molluscicides	454	53	5	Ferric phosphate (454)
Seed treatments	7,259	62	86	Fludioxonil (6,204)
All pesticides	73,503	14,947	98	

Figure 15 Use of pesticides on winter oats (percentage of total area treated with formulations) – 2022

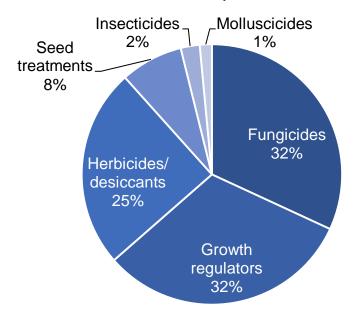

Spring oats

- An estimated 18,713 hectares of spring oats were grown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), a decrease of 28 per cent since 2020
- Eighty-three per cent of the crop was treated with a pesticide (see Figure 16 for types of pesticides used)
- Pesticides were applied to 97,932 treated hectares
- There were 23,698 kilograms of pesticide applied in total (see summary table)
- Spring oats received on average 2.7 pesticide sprays (Table 1). These sprays included 1.8 fungicide applications and 1.5 herbicide/desiccant applications (applied to 78 per cent and 76 per cent of the crop area respectively) and 1.2 applications of growth regulators (applied to 71 per cent)
- The most common variety encountered was Canyon, accounting for 41 per cent of the sample area followed by Conway at 23 per cent
- The average reported yield was 6.4 t/ha

Summary of pesticide use on spring oats:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	33,383	5,153	78	Prothioconazole/ spiroxamine (5,551)
Herbicides/ desiccants	34,597	8,292	76	Fluroxypyr (8,381)
Insecticides	1,416	7	8	Lambda-cyhalothrin (1,416)
Growth regulators	17,815	9,095	71	Chlormequat (8,180)
Sulphur	440	1,038	2	[z]
Seed treatments	10,280	114	55	Fludioxonil (8,192)
All pesticides	97,932	23,698	83	

Figure 16 Use of pesticides on spring oats (percentage of total area treated with formulations) – 2022

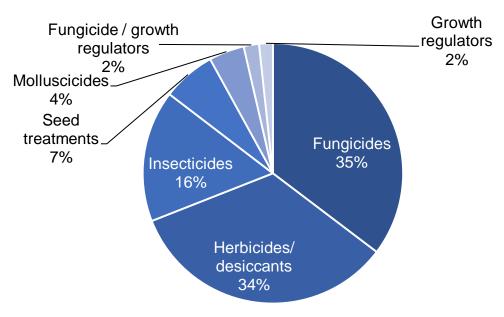

Winter rye

- An estimated 7,174 hectares of winter rye were gown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), an increase of 40 per cent since 2020
- Ninety-six per cent of the crop was treated with a pesticide (see Figure 17 for types of pesticides used)
- Pesticides were applied to 52,441 treated hectares
- There were 15,342 kilograms of pesticide applied in total (see summary table)
- Winter rye received on average 3.2 pesticide sprays (Table 1). These sprays included 2.2 fungicide applications and 1.3 herbicide/desiccant applications (applied to 84 per cent and 90 per cent of the crop area respectively), 1.6 applications of growth regulators (applied to 96 per cent) and one application of both molluscicides and insecticides (applied to 11 per cent and 17 per cent of crop area respectively)
- The most common variety encountered was KWS Tayo accounting for 43 per cent of the sample area followed by SU Performer at 32 per cent

Summary of pesticide use on winter rye:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	16,722	3,202	84	Prothioconazole/ spiroxamine (2,763)
Herbicides/ desiccants	13,014	4,488	90	Pendimethalin/ picolinafen (3,273)
Insecticides	1,238	6	17	Lambda-cyhalothrin (1,238)
Growth regulators	16,604	7,528	96	Chlormequat (7,676)
Molluscicides	785	71	11	Metaldehyde (785)
Seed treatments	4,078	46	57	Fludioxonil/ fluxapyroxad/ triticonazole (2,515)
All pesticides	52,441	15,342	96	

Figure 17 Use of pesticides on winter rye (percentage of total area treated with formulations) – 2022

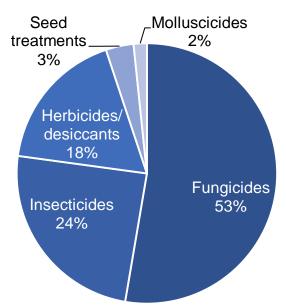

Oilseeds

- An estimated 35,431 hectares of oilseeds (linseed, winter and spring oilseed rape) were grown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), representing an increase of 15 per cent since 2020
- One hundred per cent of the crop was treated with a pesticide (see Figure 18 for types of pesticides used)
- Pesticides were applied to 329,148 treated hectares
- There were 93,710 kilograms of pesticide used in total on the crop (see summary table)
- The oilseeds crop received on average 6.1 pesticide applications (Table 1). These included 2.7 fungicide applications and three herbicide/desiccant applications (applied to 98 and 94 per cent of the crop area respectively), one application of growth regulators (applied to 16 per cent), 1.2 molluscicide applications (applied to 34 per cent), 1.9 insecticides applications (applied to 80 per cent) and one application of a combined fungicide & growth regulator formulation applied to 15 per cent of the crop area
- Crome was the most common variety, accounting for 22 per cent of the sample area, followed by Aurelia at 16 per cent (both winter oilseed rape)
- The oilseeds average reported yield was 4.5 t/ha

Summary of pesticide use on oilseeds:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	116,260	18,997	98	Prothioconazole/ tebuconazole (27,681)
Fungicide/ growth regulators	6,275	1,894	15	Mepiquat chloride/ prohexadione-calcium/ pyraclostrobin (6,275)
Growth regulators	5,599	1,082	16	Mepiquat chloride/ metconazole (5,599)
Herbicides/ desiccants	110,972	69,398	94	Glyphosate (27,441)
Insecticides	53,831	854	80	Lambda-cyhalothrin (36,814)
Molluscicides	14,459	1,478	34	Ferric phosphate (13,684)
Seed treatments	21,752	7	61	Bacillus amyloliquefaciens strain MBI600 (21,752)
All pesticides	329,148	93,710	100	

Figure 18 Use of pesticides on oilseeds (percentage of total area treated with formulations) – 2022

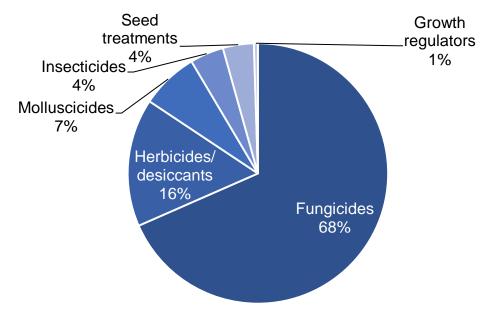

Seed potatoes

- An estimated 11,893 hectares of seed potatoes were grown in Scotland in 2022, (based on SAF 2022 – see changes from previous years section for further explanation) representing a decrease of one per cent since 2020
- One hundred per cent of the crop was treated with a pesticide (see Figure 19 for types of pesticide used)
- Pesticides were applied to 270,532 treated hectares
- There were 86,049 kilograms of pesticide used in total on the crop (see summary table below)
- The seed potato crop received on average 10.2 pesticide applications (Table 1). These included 8.2 fungicide applications and 2.2 herbicide/desiccant applications (applied to 100 per cent of the crop area), 5.4 and 1.9 applications of insecticide and molluscicide respectively (applied to 97 and 20 per cent of the area respectively)
- Maris Piper was the most common variety, accounting for 24 per cent of the sample area, followed by Innovator at seven per cent
- The average reported yield was 38.4 t/ha

Summary of pesticide use on seed potatoes:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	142,512	61,688	100	Mancozeb (25,119)
Herbicides/ desiccants	48,027	20,523	100	Carfentrazone-ethyl (13,273)
Insecticides	66,219	1,341	97	Lambda-cyhalothrin (27,997)
Molluscicides	4,444	456	20	Ferric phosphate (4,444)
Seed treatments	9,330	2,040	75	Flutolanil (4,538)
All pesticides	270,532	86,049	100	

Figure 19 Use of pesticides on seed potatoes (percentage of total area treated with formulations) – 2022


Ware potatoes

- An estimated 15,247 hectares of ware potatoes were grown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), representing a decrease of six per cent since 2020
- Ninety-nine per cent of the crop was treated with a pesticide (see Figure 20 for types of pesticide used)
- Pesticides were applied to 376,918 treated hectares with 165,412 kilograms of pesticide applied in total (see summary table below)
- The ware potato crop received on average 13.7 pesticide applications (Table 1). These included 10.3 fungicide applications and 2.2 herbicide/desiccant applications (applied to 99 per cent of the crop area), insecticides and molluscicides received 2.1 and three applications each (applied to 46 per cent and 60 per cent respectively) and one application of growth regulators (applied to 12 per cent of the crop area)
- Maris Piper was the most common variety grown for ware, accounting for 42 per cent of the sample area followed by Saxon at nine per cent
- The average reported yield was 50.7 t/ha

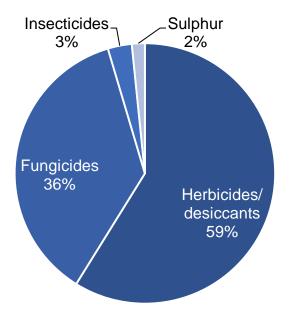
Summary of pesticide use on ware potatoes:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	257,901	127,632	99	Mancozeb (56,750)
Herbicides/ desiccants	60,007	25,073	99	Pyraflufen-ethyl (18,062)
Insecticides	15,757	2,577	46	Esfenvalerate (5,845)
Growth regulators	1,869	5,606	12	Maleic hydrazide (1,869)
Molluscicides	26,909	2,826	60	Ferric phosphate (26,909)
Seed treatments	14,475	1,699	89	Fludioxonil (6,118)
All pesticides	376,918	165,412	99	

Figure 20 Use of pesticides on ware potatoes (percentage of total area treated with formulations) – 2022

Legumes

The legumes category includes dry harvest peas and field beans. These crops have been combined as too few holdings were encountered to report the pesticide use for each crop separately.


- An estimated 3,025 hectares of legumes were grown in Scotland in 2022 (based on SAF 2022 – see changes from previous years section for further explanation), representing an increase of 23 per cent since 2020
- Ninety-one per cent of the crop was treated with a pesticide (see Figure 21 for types of pesticide used)
- Pesticides were applied to 12,412 treated hectares
- There were 7,540 kilograms of pesticide used in total on the crop (see summary table below)
- The legume crop received on average 3.5 pesticide applications (Table 1). These included 1.5 fungicide applications and 2.1 herbicide/desiccant applications (applied to 84 and 88 per cent of the crop area respectively) and one application of insecticides to 12 per cent of the crop area
- The most common variety, accounting for 51 per cent of the sample area, was Fuego followed by Yukon at 13 per cent (both field beans)
- The average reported yield was 3.9 t/ha

Summary of pesticide use on legumes:

Pesticide group	Formulation area treated	Weight of pesticides applied	Percentage of crop treated	Most used formulations
	ha	kg	%	ha
Fungicides	4,538	708	84	Azoxystrobin (1,330)
Herbicides/ desiccants	7,304	6,050	88	Glyphosate (1,847)
Insecticides	369	3	12	Lambda-cyhalothrin (324)
Sulphur	200	780	3	[z]
All pesticides	12,412	7,540	91	

Note: some shorthand is used in this table: [z] = not applicable.

Figure 21 Use of pesticides on legumes (percentage of total area treated with formulations) – 2022

Appendix 1 – Estimated application tables

Table 1 Percentage of each crop treated with pesticides and mean number of spray applications – 2022

Crop	Fungic	ides	Herbici	ides ⁽¹⁾	Insection	cides ⁽²⁾	Mollus	cicide	Sulphu	ır	Growth regulat		Any pestici exc. S		STs	Any pesticide inc. STs
	%	spray apps	%	spray apps	%	spray apps	%	spray apps	%	spray apps	%	spray apps	%	spray apps	%	%
Winter barley	97	2.5	89	2.1	22	1.0	2	1.0	2	1.0	87	1.8	97	4.0	87	97
Spring barley	93	1.8	93	1.5	3	1.0	0	0.0	2	1.0	42	1.4	95	2.5	83	97
Winter wheat	95	3.5	94	2.3	23	1.0	11	1.2	5	1.2	93	2.0	96	5.1	91	98
Spring wheat	92	2.7	92	1.4	0	0.0	0	0.0	7	5.0	92	1.2	99	3.5	92	99
Winter oats	96	2.5	91	2.3	17	1.0	5	1.0	0	0.0	93	1.5	96	4.2	86	98
Spring oats	78	1.8	76	1.5	8	1.0	0	0.0	2	1.2	71	1.2	81	2.7	55	83
Winter rye	84	2.2	90	1.3	17	1.0	11	1.0	0	0.0	96	1.6	96	3.2	57	96
Oilseeds ⁽³⁾	98	2.7	94	3.0	80	1.9	34	1.2	0	0.0	16	1.0	100	6.1	61	100
Seed potatoes	100	8.2	100	2.2	97	5.4	20	1.9	0	0.0	0	0.0	100	10.2	75	100
Ware potatoes	99	10.3	99	2.2	46	2.1	60	3.0	0	0.0	12	1.0	99	13.7	89	99
Legumes ⁽⁴⁾	84	1.5	88	2.1	12	1.0	0	0.0	3	2.0	0	0.0	91	3.5	0	91
Total arable crops ⁽⁵⁾	94	2.8	93	1.9	19	1.9	8	1.7	2	1.1	56	1.7	96	4.1	82	97

- (1) Includes desiccants.
- (2) Includes nematicides.
- (3) Includes linseed, spring and winter oilseed rape.
- (4) Includes field beans and dry harvest peas.
- (5) Includes triticale.

Note: STs = seed treatments.

The average number of spray applications is calculated only on the areas receiving each pesticide group and therefore the minimum number of applications is always one (see Appendix 3 – definitions and notes for details).

Table 2 Cereal seed treatment formulations – 2022

Seed treatments	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats	l	Total 202	22 ⁽¹⁾	Total 202	2 0 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Cypermethrin	0	0	0	0	336	<0.5	0	0	0	0	0	0	336	42	1,625	202
Difenoconazole/ fludioxonil/ tebuconazole	2,097	5	0	0	0	0	0	0	0	0	0	0	2,097	49	0	0
Fludioxonil	3,515	8	10,524	4	51,891	49	989	77	6,204	74	8,192	44	82,354	817	77,725	774
Fludioxonil/ fluxapyroxad/ triticonazole	665	2	0	0	2,318	2	0	0	0	0	0	0	5,498	126	0	0
Fludioxonil/ sedaxane	0	0	638	<0.5	15,477	15	0	0	0	0	684	4	16,799	324	9,155	181
Fluopyram/ prothioconazole/ tebuconazole	15,929	36	0	0	0	0	0	0	0	0	0	0	15,929	285	10,955	201
Imazalil/ ipconazole	10,172	23	88,800	38	4,799	5	0	0	0	0	0	0	103,771	1,457	46,853	636
Ipconazole	0	0	2,819	1	0	0	0	0	0	0	0	0	2,819	12	0	0
Prothioconazole	457	1	9,296	4	2,977	3	0	0	259	3	0	0	13,175	261	23,909	463
Prothioconazole/ tebuconazole	5,542	13	81,398	34	17,044	16	201	16	0	0	1,404	8	106,113	2,426	188,094	4,257
Silthiofam	0	0	0	0	5,610	5	0	0	0	0	0	0	5,610	288	6,381	330
Unspecified seed treatment ⁽⁴⁾	134	<0.5	3,154	1	1,741	2	0	0	796	9	0	0	5,826	[z]	34,397	[z]

Table 2 Cereals seed treatment formulations – 2022 continued

Seed treatments	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats	•	Spring oats		Total 202	22 ⁽¹⁾	Total 202	20 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
All seed treatments	38,510	87	196,629	83	102,194	91	1,190	92	7,259	86	10,280	55	360,327	6,088	402,746	7,091
No information seed treatment ⁽⁴⁾	1,961	4	3,218	1	3,883	4	0	0	193	2	7	<0.5	10,282	[z]	12,631	[z]
No seed treatment	3,702	8	35,966	15	5,820	5	101	8	984	12	8,425	45	57,234	[z]	23,857	[z]
Area grown	44,173		235,813		105,827		1,291		8,436		18,713		421,772		434,443	

⁽¹⁾ Includes winter rye and triticale.

Note: some shorthand is used in this table: [z] = not applicable.

⁽²⁾ Includes winter rye. Winter rye data is available in excel format in the published supporting document.

⁽³⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

⁽⁴⁾ Refer to Appendix 3 for definitions.

Table 3 Cereal insecticide and molluscicide formulations - 2022

Insecticides	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 202	2 ⁽¹⁾	Total 202	10 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Esfenvalerate	5,898	13	0	0	9,404	9	0	0	0	0	0	0	15,303	63	8,502	33
Flonicamid	0	0	0	0	800	1	0	0	0	0	0	0	800	34	0	0
Lambda- cyhalothrin	4,013	9	7,162	3	14,929	14	0	0	1,456	17	1,416	8	30,214	148	51,871	240
All insecticides	9,911	22	7,162	3	25,133	23	0	0	1,456	17	1,416	8	46,316	245	63,269	291
Molluscicides																
Ferric phosphate	561	1	0	0	13,399	10	0	0	454	5	0	0	14,415	1,488	16,631	1,814
Metaldehyde	297	1	0	0	866	1	0	0	0	0	0	0	1,948	193	5,977	327
All molluscicides	858	2	0	0	14,265	11	0	0	454	5	0	0	16,363	1,680	22,608	2,141
Area grown	44,173		235,813		105,827		1,291		8,436		18,713		421,772		434,443	

⁽¹⁾ Includes winter rye and triticale.

⁽²⁾ Includes winter rye. Winter rye data is available in excel format in the published supporting document.

⁽³⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

 Table 4
 Cereal fungicide and sulphur formulations - 2022

Fungicides	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 202	2 ⁽¹⁾	Total 202	0 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Azoxystrobin	202	<0.5	4,178	2	7,669	7	817	39	1,270	15	319	2	15,209	1,709	15,478	1,466
Azoxystrobin/ cyproconazole	0	0	0	0	4,523	4	0	0	0	0	0	0	4,523	614	5,755	840
Benzovindiflupyr	2,398	5	15,059	6	7,306	7	135	10	0	0	0	0	26,567	1,271	14,112	718
Benzovindiflupyr/ prothioconazole	3,853	9	8,089	3	542	1	201	16	0	0	1,426	8	14,132	1,890	6,045	709
Bixafen	836	2	2,473	1	1,360	1	0	0	0	0	0	0	4,668	160	41,196	1,062
Bixafen/ fluopyram	896	2	3,190	1	1,184	1	0	0	0	0	0	0	5,269	536	185	26
Bixafen/ fluopyram/ prothioconazole	5,225	12	4,526	2	5,012	4	617	24	428	5	241	1	16,049	3,062	4,974	1,455
Bixafen/ fluoxastrobin/ prothioconazole	0	0	0	0	787	1	0	0	0	0	0	0	787	166	11,888	2,810
Bixafen/ prothioconazole	5,079	7	13,771	5	141	<0.5	101	4	428	5	1,211	6	20,731	2,338	34,832	3,946
Bixafen/ prothioconazole/ spiroxamine	11,026	22	31,285	12	19,245	18	135	10	1,699	19	4,436	24	70,215	24,191	45,675	17,217
Bixafen/ prothioconazole/ tebuconazole	0	0	0	0	1,967	2	0	0	0	0	0	0	1,967	525	5,882	1,553
Boscalid	0	0	0	0	19,544	18	0	0	0	0	0	0	19,544	3,910	0	0

Table 4 Cereal fungicide and sulphur formulations – 2022 continued

Fungicides	Winter barley		Spring barley		Winter wheat		Sprii whea	•	Winter oats	•	Spring oats		Total 202	22 ⁽¹⁾	Total 202	2 0 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Bromuconazole/ tebuconazole	0	0	0	0	11,172	11	0	0	0	0	0	0	11,499	2,120	7,125	1,751
Cyflufenamid	4,981	10	5,627	2	12,220	10	295	23	6,492	76	2,359	12	32,565	300	34,845	292
Cyprodinil	7,859	17	8,440	4	0	0	0	0	0	0	0	0	16,298	3,898	26,936	5,603
Fenpicoxamid	0	0	0	0	13,375	13	0	0	0	0	0	0	13,375	871	0	0
Fenpicoxamid/ Prothioconazole	0	0	0	0	25,308	24	0	0	0	0	0	0	25,752	4,240	0	0
Fluoxastrobin/ prothioconazole	0	0	465	<0.5	8,823	8	402	16	0	0	282	2	9,973	1,494	11,026	1,614
Fluoxastrobin/ prothioconazole/ trifloxystrobin	6,918	11	47,045	14	196	<0.5	0	0	0	0	0	0	54,159	6,776	67,861	8,605
Fluxapyroxad	5,110	11	26,284	10	28,927	22	0	0	0	0	549	3	60,870	2,029	62,675	2,439
Fluxapyroxad/ mefentrifluconazole	4,949	10	34,907	15	45,251	35	0	0	85	1	1,006	5	86,305	10,226	28,482	3,311
Fluxapyroxad/ metconazole	0	0	2,543	1	2,119	2	0	0	0	0	0	0	4,662	369	1,150	121
Fluxapyroxad/ pyraclostrobin	9,205	16	20,279	8	25,468	16	372	18	0	0	234	1	56,205	6,898	33,858	4,994
Folpet	45,476	70	201,091	74	155,068	73	671	42	0	0	0	0	402,305	201,293	237,775	111,591
Laminarin	0	0	0	0	6,723	6	0	0	0	0	0	0	6,723	179	0	0
Mancozeb	0	0	0	0	21,270	15	0	0	0	0	0	0	21,270	20,765	18,602	15,175
Mefentrifluconazole	2,722	5	8,740	4	33,647	24	0	0	0	0	0	0	45,108	3,836	21,300	1,636

Table 4 Cereal fungicide and sulphur formulations – 2022 continued

Fungicides	Winter barley		Spring barley		Winter wheat		Sprin whea	_	Winter oats		Spring oats		Total 202	22 ⁽¹⁾	Total 202	0(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Mefentrifluconazole/ pyraclostrobin	227	1	585	<0.5	27,395	22	0	0	0	0	0	0	28,208	5,122	0	0
Metconazole	0	0	908	<0.5	2,752	3	0	0	0	0	0	0	3,660	219	1,956	106
Metrafenone	0	0	0	0	0	0	0	0	636	8	446	2	1,083	61	300	19
Prochloraz	0	0	0	0	2,188	2	0	0	0	0	0	0	2,188	545	0	0
Prochloraz/ tebuconazole	0	0	0	0	5,883	6	0	0	0	0	0	0	5,883	1,928	11,401	4,377
Proquinazid	2,559	6	1,085	<0.5	7,105	6	676	28	492	6	4,595	19	17,900	476	13,446	363
Prothioconazole	16,363	27	65,276	24	45,467	37	337	26	10,097	73	5,396	19	143,292	13,303	86,392	8,201
Prothioconazole/ spiroxamine	14,442	27	41,644	15	17,720	14	194	15	1,600	17	5,551	30	84,101	21,015	75,448	16,439
Prothioconazole/ spiroxamine/ tebuconazole	1,965	4	3,683	2	1,799	2	0	0	0	0	1,037	4	8,484	2,048	4,645	781
Prothioconazole/ tebuconazole	6,936	15	65,028	25	46,213	40	251	19	947	11	1,449	8	122,396	17,265	125,925	15,894
Prothioconazole/ trifloxystrobin	6,144	11	32,991	13	4,768	5	0	0	0	0	0	0	44,364	5,581	94,890	11,553
Pyraclostrobin	1,020	2	3,538	2	9,757	8	118	5	576	7	1,089	4	17,352	1,509	3,016	245

Table 4 Cereal fungicide and sulphur formulations – 2022 continued

Fungicides	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 2022 ⁽¹)	Total 2020	(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Tebuconazole	2,925	5	2,245	1	72,629	47	1,035	52	2,840	27	1,758	7	85,746	12,295	49,627	6,727
Trifloxystrobin	4,808	10	22,991	8	460	<0.5	0	0	0	0	0	0	28,259	1,801	27,151	1,697
All fungicides	174,124	97	677,963	93	702,982	95	6,356	92	27,591	96	33,383	78	1,639,648	388,834	1,619,439	390,727
Sulphur	846	2	5,825	2	5,847	5	448	7	0	0	440	2	13,407	21,053	9,135	38,254
Area grown	44,173		235,813		105,827		1,291		8,436		18,713		421,772		434,443	

⁽¹⁾ Includes winter rye and triticale.

⁽²⁾ Includes winter rye. Winter rye data is available in excel format in the published supporting document.

⁽³⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

Table 5 Cereal herbicide/desiccant and growth regulator formulations – 2022

Herbicides/ desiccants	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 202	22 ⁽¹⁾	Total 2020	O ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
2,4-D/MCPA	0	0	284	<0.5	0	0	0	0	0	0	0	0	284	192	2,365	3,991
Amidosulfuron	0	0	855	<0.5	0	0	0	0	0	0	0	0	855	26	0	0
Amidosulfuron/ iodosulfuron- methyl-sodium	175	<0.5	0	0	385	<0.5	0	0	0	0	0	0	561	9	4,441	100
Amidosulfuron/ iodosulfuron- methyl-sodium/ mesosulfuron- methyl	0	0	0	0	3,959	4	0	0	0	0	0	0	3,959	136	411	15
Chlorotoluron/ diflufenican/ pendimethalin	3,479	8	5,298	2	8,040	8	135	10	0	0	0	0	16,951	19,067	16,943	18,913
Clodinafop- propargyl	0	0	0	0	19,310	16	194	15	0	0	0	0	19,848	534	6,714	181
Clopyralid	0	0	1,016	<0.5	0	0	0	0	129	2	0	0	1,284	84	1,764	123
Clopyralid/ florasulam/ fluroxypyr	1,587	4	3,040	1	4,103	3	201	16	0	0	387	2	9,318	1,527	9,216	1,378
Dicamba/ mecoprop-p	0	0	16,950	7	0	0	0	0	0	0	387	2	17,337	8,467	26,849	13,510
Dichlorprop-p/ MCPA/ mecoprop-p	0	0	1,351	1	510	<0.5	201	16	0	0	0	0	2,062	1,816	2,620	1,834

Table 5 Cereal herbicide/desiccant and growth regulator formulations – 2022 continued

Herbicides/ desiccants	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 202	22 ⁽¹⁾	Total 2020	O ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Diflufenican	8,970	20	23,486	10	26,739	25	59	5	638	8	2,254	12	64,191	3,818	65,158	4,277
Diflufenican/ florasulam	703	2	0	0	2,029	2	0	0	0	0	0	0	2,732	90	1,810	62
Diflufenican/ flufenacet	13,02 7	29	26,343	11	36,009	34	251	19	5,670	67	0	0	83,900	15,821	78,504	12,822
Diflufenican/ flufenacet/ metribuzin	467	1	0	0	1,937	2	0	0	0	0	0	0	2,404	496	0	0
Diflufenican/ iodosulfuron- methyl-sodium/ mesosulfuron- methyl	0	0	0	0	6,430	6	0	0	0	0	0	0	6,430	368	6,514	341
Diflufenican/ metsulfuron- methyl	0	0	0	0	776	1	0	0	0	0	0	0	776	40	0	0
Diflufenican/ pendimethalin	733	2	0	0	0	0	0	0	0	0	0	0	733	520	1,453	1,099
Fenoxaprop- p-ethyl	1,234	3	11,568	5	1,136	1	0	0	0	0	0	0	13,938	725	11,930	665
Florasulam	1,133	3	376	<0.5	2,521	2	0	0	227	3	0	0	4,363	20	9,712	35
Florasulam/ fluroxypyr	537	1	6,010	3	5,625	5	0	0	2,381	28	1,523	8	16,264	1,331	26,237	1,914

Table 5 Cereal herbicide/desiccant and growth regulator formulations – 2022 continued

Herbicides/ desiccants	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 202	22 ⁽¹⁾	Total 202	0 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Florasulam/ halauxifen-methyl	6,097	14	35,051	15	21,088	20	437	34	1,590	19	0	0	64,881	431	36,794	265
Florasulam/ pyroxsulam	0	0	0	0	7,028	7	359	28	0	0	0	0	7,387	158	3,325	75
Florasulam/ tribenuron-methyl	762	2	16,592	7	1,622	2	0	0	689	8	4,022	21	23,687	380	5,458	86
Flufenacet	0	0	0	0	753	1	0	0	0	0	0	0	753	171	4,689	722
Flufenacet/ pendimethalin	362	1	147	<0.5	2,192	2	0	0	0	0	0	0	2,701	1,471	5,967	5,652
Flufenacet/ picolinafen	8,131	18	809	<0.5	21,732	21	0	0	0	0	0	0	33,563	6,175	19,100	3,348
Fluroxypyr	5,354	12	65,328	27	18,503	17	135	10	953	11	8,381	42	98,840	12,534	90,898	11,005
Fluroxypyr/ halauxifen-methyl	2,275	5	53,194	23	5,248	4	0	0	0	0	0	0	60,716	6,319	69,057	6,318
Fluroxypyr/ mesosulfuron- methyl/ thifensulfuron- methyl	731	2	0	0	0	0	0	0	0	0	0	0	731	104	0	0
Fluroxypyr/ metsulfuron-methyl	1,099	2	3,754	2	2,640	2	0	0	0	0	0	0	7,493	753	5,414	510
Glyphosate	20,101	45	41,151	17	23,757	20	0	0	2,949	35	4,002	18	92,476	66,457	161,783	127,410

Table 5 Cereal herbicide/desiccant and growth regulator formulations – 2022 continued

Herbicides/ desiccants	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 202	22 ⁽¹⁾	Total 202	0 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
lodosulfuron-methyl- sodium/ mesosulfuron-methyl	0	0	0	0	9,980	9	0	0	0	0	0	0	9,980	106	13,934	149
lodosulfuron-methyl- sodium/mesosulfuron -methyl/ thiencarbazone- methyl	0	0	0	0	75	<0.5	0	0	0	0	0	0	75	2	0	0
MCPA	302	1	1,538	1	0	0	0	0	0	0	0	0	1,840	733	5,296	4,992
Mecoprop-p	1,215	3	26,802	11	5,729	5	59	5	1,476	18	4,965	27	40,245	27,180	76,033	47,658
Mesosulfuron-methyl/ propoxycarbazone- sodium	0	0	0	0	554	1	0	0	0	0	0	0	554	20	567	19
Metsulfuron-methyl	2,178	5	7,913	3	9,368	9	59	5	814	10	570	3	20,903	94	16,413	73
Metsulfuron-methyl/ thifensulfuron-methyl	808	2	89,476	37	7,387	7	236	18	0	0	0	0	97,907	2,717	123,867	3,558

Table 5 Cereal herbicide/desiccant and growth regulator formulations – 2022 continued

Herbicides/ desiccants	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 2022	(1)	Total 2020 ⁽²	,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Metsulfuron- methyl/ tribenuron- methyl	5,996	14	24,506	10	10,747	10	0	0	731	9	2,611	14	45,456	336	51,260	396
Pendimethalin	4,986	11	3,730	2	10,752	10	0	0	0	0	0	0	19,468	15,716	21,462	16,982
Pendimethalin/ picolinafen	12,359	28	13,374	6	22,886	22	0	0	0	0	0	0	52,100	38,012	55,902	44,507
Pinoxaden	3,669	8	23,976	10	4,350	4	0	0	0	0	0	0	31,995	1,021	37,354	1,105
Prosulfocarb	2,736	6	0	0	1,709	2	0	0	0	0	0	0	4,446	7,105	11,018	13,217
Pyroxsulam	0	0	0	0	744	1	0	0	0	0	0	0	744	14	2,093	39
Sulfosulfuron	0	0	0	0	953	1	0	0	0	0	0	0	953	19	108	2
Thifensulfuron- methyl/ tribenuron- methyl	2,164	5	39,148	17	3,467	3	201	16	272	3	5,495	26	50,933	1,133	77,542	1,830
Tri-allate	250	1	0	0	575	1	0	0	0	0	0	0	825	1,337	484	481
Tribenuron- methyl	1,496	3	2,750	1	4,525	4	0	0	1,177	14	0	0	9,948	56	11,340	74
All herbicides/ desiccants	115,115	89	545,815	93	317,876	94	2,525	92	19,695	91	34,597	76	1,049,791	245,638	1,190,313	357,315

Table 5 Cereal herbicide/desiccant and growth regulator formulations – 2022 continued

Growth regulators	Winter barley		Spring barley		Winter wheat		Sprin whea	_	Winter oats		Spring oats		Total 202	2 ⁽¹⁾	Total 202	0 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
2-chloroethyl- phosphonic acid	9,785	20	31,839	14	26,102	24	0	0	0	0	0	0	68,240	11,225	35,921	5,938
2-chloroethyl- phosphonic acid/ chlormequat	5,324	12	5,325	2	6,540	6	0	0	0	0	0	0	17,190	8,103	16,329	6,041
2-chloroethyl- phosphonic acid/ chlormequat chloride	605	1	0	0	768	1	0	0	0	0	0	0	1,373	684	2,510	964
2-chloroethyl- phosphonic acid/mepiquat	774	2	120	<0.5	1,811	2	0	0	0	0	0	0	3,352	1,215	2,644	1,005
2-chloroethyl- phosphonic acid/mepiquat chloride	1,521	3	2,797	1	2,845	3	0	0	0	0	0	0	7,164	2,991	1,549	508
Chlormequat	35,271	64	23,430	9	111,112	79	820	63	7,194	81	8,180	41	193,703	148,158	211,357	160,806
Mepiquat chloride/ prohexadione- calcium	5,344	11	16,236	7	8,466	7	0	0	3,445	37	4,240	23	37,840	5,486	44,470	8,117

Table 5 Cereal herbicide/desiccant and growth regulator formulations – 2022 continued

Growth regulators	Winter barley		Spring barley		Winter wheat		Spring wheat		Winter oats		Spring oats		Total 202	2 ⁽¹⁾	Total 202	0 ^(2,3)
	ha	%	ha	%	ha	%	ha	%	ha	%	ha	%	ha	kg	ha	kg
Prohexadione- calcium	316	1	0	0	6,514	6	0	0	0	0	0	0	7,421	256	5,316	143
Prohexadione- calcium/ trinexapac-ethyl	4,368	10	10,837	5	7,568	5	0	0	0	0	1,067	4	24,706	793	10,776	359
Trinexapac- ethyl	31,502	56	45,314	19	114,339	76	1,140	88	6,409	70	4,328	21	209,582	7,180	170,012	5,663
All growth regulators	94,811	87	135,898	42	286,067	93	1,959	92	17,048	93	17,815	71	570,570	186,091	501,530	189,739
Area grown	44,173		235,813		105,827		1,291		8,436		18,713		421,772		434,443	

⁽¹⁾ Includes winter rye and triticale.

⁽²⁾ Includes winter rye. Winter rye data is available in excel format in the published supporting document.

⁽³⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

Table 6 Oilseeds seed treatment formulations - 2022

Seed treatments	Total 202	2 ⁽¹⁾		Total 2020 ⁽²	2,3)
	ha	%	kg	ha	kg
Bacillus amyloliquefaciens strain MBI600	21,752	61	7	7,783	2
All seed treatments	21,752	61	7	22,944	93
No information seed treatment ⁽⁴⁾	487	1	[z]	1,987	[z]
No seed treatment	13,145	37	[z]	5,862	[z]
Area grown	35,431			30,793	

- (1) Includes linseed, spring and winter oilseed rape.
- (2) Includes spring and winter oilseed rape.
- (3) For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.
- (4) Refer to Appendix 3 for definitions.

Note: some shorthand is used in this table: [z] = not applicable.

Table 7 Oilseeds insecticide and molluscicide formulations - 2022

Insecticides	Total 202	2 ⁽¹⁾		Total 2020 ⁽	2,3)
	ha	%	kg	ha	kg
Acetamiprid	1,540	4	55	656	26
Cypermethrin	208	<0.5	5	0	0
Deltamethrin	2,128	6	13	368	3
Indoxacarb	742	2	14	503	12
Lambda-cyhalothrin	36,814	63	246	26,390	182
Tau-fluvalinate	12,399	35	522	11,293	473
All insecticides	53,831	80	854	41,369	801
Molluscicides					
Ferric phosphate	13,684	34	1,395	14,546	1,754
Metaldehyde	775	2	83	5,434	384
All molluscicides	14,459	34	1,478	19,980	2,138
Area grown	35,431			30,793	

- (1) Includes linseed, spring and winter oilseed rape.
- (2) Includes spring and winter oilseed rape.
- (3) For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

Table 8 Oilseeds fungicide and fungicide/growth regulator formulations - 2022

Fungicides	Total 202	2 ⁽¹⁾		Total 2020 ⁽	2,3)
	ha	%	kg	ha	kg
Azoxystrobin	7,658	21	1,335	4,898	701
Azoxystrobin/tebuconazole	2,363	7	643	714	217
Bixafen/prothioconazole	2,884	8	506	137	26
Bixafen/prothioconazole/ tebuconazole	5,846	12	1,136	3,549	985
Boscalid	5,495	16	1,008	4,080	671
Boscalid/dimoxystrobin	7,119	15	1,021	2,886	431
Boscalid/metconazole	3,766	10	585	7,724	1,231
Boscalid/pyraclostrobin	3,079	9	894	0	0
Difenoconazole	1,605	4	85	334	29
Fluopyram/ prothioconazole	6,804	19	1,312	9,073	1,752
Fluoxastrobin/ tebuconazole	5,522	16	1,464	2,259	534
Metconazole	3,926	11	146	3,309	71
Prothioconazole	24,920	49	2,863	24,014	2,711
Prothioconazole/ tebuconazole	27,681	52	4,562	25,499	4,133
Tebuconazole	7,591	17	1,438	6,897	1,090
All fungicides	116,260	98	18,997	99,321	15,344
Fungicide/growth regulator					
Mepiquat chloride/ prohexadione-calcium/ pyraclostrobin	6,275	15	1,894	0	0
All fungicides/growth regulators	6,275	15	1,894	0	0
Area grown	35,431			30,793	

⁽¹⁾ Includes linseed, spring and winter oilseed rape.

⁽²⁾ Includes spring and winter oilseed rape.

⁽³⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

Table 9 Oilseeds herbicide/desiccant and growth regulator formulations - 2022

Herbicides/desiccants	Total 202	2 ⁽¹⁾		Total 2020 ⁽	2,3)
	ha	%	kg	ha	kg
Aminopyralid/metazachlor/ picloram	2,501	7	1,802	1,776	1,264
Aminopyralid/propyzamide	2,138	6	1,602	1,163	957
Carbetamide	415	1	748	0	0
Clomazone	6,101	17	440	9,069	514
Clomazone/metazachlor	4,450	13	3,104	3,327	2,248
Clopyralid	854	2	120	1,119	113
Clopyralid/halauxifen- methyl	4,311	12	411	1,280	112
Clopyralid/picloram	27	<0.5	3	239	25
Cycloxydim	380	1	46	0	0
Dimethenamid- p/metazachlor/ quinmerac	2,235	6	1,966	3,046	3,328
Fluazifop-p-butyl	10,938	27	888	1,785	154
Glyphosate	27,441	73	34,974	21,228	29,860
Halauxifen- methyl/picloram	1,670	4	25	1,186	18
Imazamox/quinmerac	362	1	103	999	276
Metazachlor	15,623	44	10,916	14,679	9,041
Metazachlor/quinmerac	3,199	9	3,150	2,221	2,038
Propaquizafop	9,318	26	459	8,889	497
Propyzamide	12,403	35	8,390	11,663	7,821
Quizalofop-p-ethyl	4,120	12	158	8,245	287
Quizalofop-p-tefuryl	2,486	7	94	3,714	95
All herbicides/desiccants	110,972	94	69,398	97,013	59,219
Growth regulators ⁽⁴⁾					
Mepiquat chloride/ metconazole	5,599	16	1,082	4,603	859
All growth regulators ⁽⁴⁾	5,599	16	1,082	4,603	859
Area grown	35,431			30,793	

⁽¹⁾ Includes linseed, spring and winter oilseed rape.

⁽²⁾ Includes spring and winter oilseed rape.

⁽³⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

⁽⁴⁾ Please refer to Table 8 for combined fungicide/growth regulator formulations.

Table 10 Potato seed treatment formulations - 2022

Seed treatments	Seed potatoe	:s	Ware potatoe	:s	Total 202	2	Total 202	0 ⁽¹⁾
	ha	%	ha	%	ha	kg	ha	kg
Fludioxonil	1,982	17	6,118	40	8,100	524	5,218	420
Flutolanil	4,538	38	5,170	34	9,709	2,981	12,148	3,832
Imazalil	2,809	24	3,186	21	5,996	234	2,648	113
All seed treatment	9,330	75	14,475	89	23,804	3,739	25,150	4,888
No information seed treatment ⁽²⁾	468	4	0	0	468	[z]	1,565	[z]
No seed treatment	2,469	21	1,658	11	4,127	[z]	2,305	[z]
Area grown	11,893		15,247		27,141		28,298	

⁽¹⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

Note: some shorthand is used in this table: [z] = not applicable.

⁽²⁾ Refer to Appendix 3 for definitions.

Table 11 Potato insecticide and molluscicide formulations - 2022

Insecticide/molluscicide	Seed potatoe	:s	Ware potatoe	es	Total 202	2	Total 202	2 0 ⁽¹⁾
	ha	%	ha	%	ha	kg	ha	kg
Acetamiprid	10,325	68	1,591	8	11,916	584	8,033	383
Esfenvalerate	21,458	78	5,845	23	27,303	130	31,940	157
Flonicamid	6,194	32	1,334	9	7,527	584	8,033	634
Fluopyram ⁽²⁾	177	1	3,221	21	3,398	805	0	0
Fosthiazate	0	0	648	4	648	1,579	744	1,873
Lambda-cyhalothrin	27,997	85	3,120	16	31,117	230	37,444	269
Spirotetramat	68	1	0	0	68	5	1,298	76
All insecticides	66,219	97	15,757	46	81,976	3,918	102,686	9,097
Molluscicide								
Ferric phosphate	4,444	20	26,909	60	31,353	3,283	36,785	4,534
All molluscicides	4,444	20	26,909	60	31,353	3,283	41,906	4,945
Area grown	11,893		15,247		27,141		28,298	

⁽¹⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

⁽²⁾ Fluopyram is approved as both a fungicide and as a nematicide, the use recorded here is for nematode control. Note: some shorthand is used in this table: [z] = not applicable.

 Table 12
 Potato fungicide formulations - 2022

Fungicide	Seed potatoe	s	Ware potatoe	:S	Total 202	2	Total 202	2 0 ⁽¹⁾
	ha	%	ha	%	ha	kg	ha	kg
Ametoctradin	1,369	10	5,203	22	6,572	1,486	449	108
Ametoctradin/dimethomorph	5,893	43	13,685	52	19,578	8,135	16,612	6,883
Amisulbrom	6,921	42	17,729	56	24,650	2,397	21,372	1,832
Azoxystrobin	1,685	9	13,551	37	15,237	3,905	7,947	2,398
Benthiavalicarb	4,303	25	6,581	29	10,884	532	6,863	333
Benthiavalicarb/oxathiapiprolin	10,620	53	12,601	45	23,221	914	11,952	469
Benthiavalicarb isopropyl/ mancozeb	134	1	0	0	134	22	13,330	15,278
Cyazofamid	20,928	84	27,814	89	48,742	3,871	65,128	5,173
Cymoxanil	20,578	67	42,927	83	63,504	6,141	43,266	4,140
Cymoxanil/fluazinam	0	0	273	1	273	74	0	0
Cymoxanil/mancozeb	3,450	14	4,402	17	7,853	10,384	87,486	114,430
Cymoxanil/mandipropamid	677	5	375	1	1,051	271	5,287	1,361
Cymoxanil/propamocarb hydrochloride	3,514	25	3,938	18	7,453	8,018	10,879	11,596
Cymoxanil/zoxamide	3,760	14	6,879	20	10,640	3,152	4,397	1,279
Difenoconazole/mandipropamid	777	7	480	2	1,257	372	0	0
Dimethomorph	4,351	20	8,208	28	12,559	1,884	5,917	888
Dimethomorph/propamocarb hydrochloride	1,159	9	2,437	9	3,597	4,244	397	469
Dimethomorph/zoxamide	0	0	374	2	374	135	0	0

Table 12 Potato fungicide formulations – 2022 continued

Fungicide	Seed potatoes	1	Ware potatoes	;	Total 202	2	Total 202	O ⁽¹⁾
	ha	%	ha	%	ha	kg	ha	kg
Fluazinam	7,704	35	3,463	16	11,168	4,316	10,603	3,046
Fluopicolide/propamocarb hydrochloride	7,174	33	12,874	36	20,048	19,795	21,309	23,072
Fluopyram/prothioconazole	407	3	0	0	407	51	0	0
Fluxapyroxad	0	0	660	4	660	130	0	0
Mancozeb	25,119	72	56,750	77	81,869	104,796	12,614	16,014
Mancozeb/metalaxyl-M	0	0	251	2	251	324	0	0
Mandipropamid	11,033	62	16,443	65	27,476	3,954	28,106	4,160
Oxathiapiprolin	956	8	0	0	956	14	8,052	111
All fungicides	142,512	100	257,901	99	400,413	189,319	398,601	240,046
Area grown	11,893		15,247		27,141		28,298	

⁽¹⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

Table 13 Potato herbicide/desiccant and growth regulator formulations – 2022

Herbicides/desiccants	Seed potatoe	s	Ware potatoe	s	Total 202	2	Total 202	O ⁽¹⁾
	ha	%	ha	%	ha	kg	ha	kg
Aclonifen	1,764	15	4,027	26	5,791	6,066	2,473	2,589
Carfentrazone-ethyl	13,273	78	11,952	61	25,224	1,296	28,013	1,393
Clomazone	289	2	441	3	730	39	2,601	146
Clomazone/pendimethalin	1,177	10	1,453	10	2,631	1,786	2,364	1,717
Cycloxydim	54	<0.5	0	0	54	13	508	173
Flufenacet/metribuzin	1,453	12	949	6	2,401	2,237	3,075	2,856
Glyphosate	71	1	689	5	760	444	680	477
Metobromuron	7,737	65	7,145	47	14,882	16,973	11,676	12,697
Metribuzin	9,057	76	12,830	84	21,887	10,612	21,771	9,554
Pendimethalin	68	1	113	1	181	190	1,097	1,097
Propaquizafop	0	0	73	<0.5	73	5	190	10
Prosulfocarb	1,224	10	1,147	8	2,371	5,483	3,110	7,288
Pyraflufen-ethyl	11,707	76	18,062	79	29,769	426	29,733	440
Quizalofop-p-ethyl	68	1	0	0	68	4	0	0
Quizalofop-p-tefuryl	85	1	337	2	422	12	0	0
Rimsulfuron	0	0	789	5	789	8	3,472	37
All herbicides/desiccants	48,027	100	60,007	99	108,034	45,596	111,948	40,830
Growth regulators								
Maleic hydrazide	0	0	1,869	12	1,869	5,606	0	3,830
All growth regulators	0	0	1,869	12	1,869	5,606	0	3,830
Area grown	11,893		15,247		27,141		28,298	

⁽¹⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

 Table 14
 Legume insecticide formulations - 2022

Insecticides	Total 202	2 ⁽¹⁾		Total 2020 ⁰	1)
	ha	%	kg	ha	kg
Esfenvalerate	46	2	<0.5	91	<0.5
Lambda-cyhalothrin	324	11	2	85	<0.5
All insecticides	369	12	3	175	1
Area grown	3,025			2,466	

⁽¹⁾ Includes field beans and dry harvest peas.

No molluscicides were recorded on legumes.

 Table 15
 Legume fungicide formulations - 2022

Fungicides	Total 202	2 ⁽¹⁾		Total 2020 ⁰	1,2)
	ha	%	kg	ha	kg
Azoxystrobin	1,330	38	203	772	123
Azoxystrobin/tebuconazole	273	9	78	0	0
Benzovindiflupyr/ prothioconazole	1,066	35	142	0	0
Boscalid/pyraclostrobin	583	19	153	277	66
Metalaxyl-M	243	8	9	0	0
Metconazole	401	13	22	570	31
Tebuconazole	642	21	101	91	13
All fungicides	4,538	84	708	1,800	289
Sulphur	200	3	780	0	0
Area grown	3,025			2,466	

⁽¹⁾ Includes field beans and dry harvest peas.

⁽²⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

 Table 16
 Legume herbicide/desiccant formulations - 2022

Herbicides/desiccants	Total 202	2 ⁽¹⁾		Total 2020 ^(1,2)		
	ha	%	kg	ha	kg	
Bentazone	533	18	499	242	244	
Clomazone	785	26	54	663	38	
Clomazone/pendimethalin	1,129	37	849	617	630	
Glyphosate	1,847	51	2,338	1,360	1,562	
Imazamox/pendimethalin	956	32	963	1,250	1,057	
Pendimethalin	952	31	703	563	393	
Propaquizafop	615	20	48	163	10	
Prosulfocarb	314	10	588	0	0	
Quizalofop-p-tefuryl	173	6	8	0	0	
All herbicides/desiccants	7,304	88	6,050	5,319	3,993	
Area grown	3,025			2,466		

⁽¹⁾ Includes field beans and dry harvest peas.

Table 17 Active substances encountered in the arable survey for the first time in 2022

Active substance	Type ⁽¹⁾	Area treated (ha)	Weight (kg)	
Fenpicoxamid	F	39,127	2,285	
Laminarin	F	6,723	179	
Thiencarbazone-methyl	Н	75	1	

⁽¹⁾ Pesticide type = F: Fungicide, H: Herbicide.

⁽²⁾ For full list of formulations recorded in 2020 please refer to the 2020 report⁽³⁾.

 Table 18
 Principal active substances by area treated

Area treated (1000 ha) with the 50 most used active substances, including seed treatments, on all crops surveyed

	Active substance	Type ⁽¹⁾	2022	2020	% change
1	Prothioconazole	F/S	812	871	-7
2	Tebuconazole	F	406	451	-10
3	Folpet	F	402	239	69
4	Trinexapac-ethyl	G	234	181	30
5	Fluxapyroxad	F/S	213	150	43
6	Chlormequat	G	211	228	-8
7	Fluroxypyr	Н	192	200	-4
8	Metsulfuron-methyl	Н	173	197	-12
9	Spiroxamine	F	163	125	30
10	Mefentrifluconazole	F	159	50	220
11	Diflufenican	Н	158	155	2
12	Thifensulfuron-methyl	Н	150	202	-26
13	Halauxifen-methyl	Н	131	108	21
14	Tribenuron-methyl	Н	130	145	-11
15	Bixafen	F	128	147	-13
16	Florasulam	Н	128	93	38
17	Trifloxystrobin	F	127	189	-33
18	Flufenacet	Н	123	108	14
19	Glyphosate	Н	123	185	-34
20	Fludioxonil	S	114	94	21
21	Pyraclostrobin	F & F/G	111	61	82
22	Mancozeb	F	111	147	-25
23	Imazalil	S	110	49	123
24	Ipconazole	S	107	47	128
25	Lambda-cyhalothrin	1	98	116	-15
26	2-chloroethylphosphonic acid	G	97	59	65
27	Pendimethalin	Н	92	102	-10
28	Cymoxanil	F	91	145	-37
29	Prohexadione-calcium	G & F/G	76	61	26
30	Picolinafen	Н	75	74	2
31	Fluoxastrobin	F	70	93	-24
32	Mecoprop-p	Н	60	107	-44
33	Ferric phosphate	M	59	68	-13
34	Mepiquat chloride	G & F/G	57	51	12
35	Cyazofamid	F	49	65	-25
36	Fluopyram	F/I/S	48	25	90
37	Azoxystrobin	F	47	40	18
38	Esfenvalerate		43	41	4
39	Benzovindiflupyr	F	42	20	107

Table 18 Principal active substances by area treated - continued

Area treated (1000 ha) with the 50 most used active substances, including seed treatments, on all crops surveyed

	Active substance	Type ⁽¹⁾	2022	2020	% change
41	Fenpicoxamid	F	39	0	[z]
42	Dimethomorph	F	36	36	0
43	Benthiavalicarb	F	34	19	81
44	Cyflufenamid	F	33	35	-7
45	Pinoxaden	Н	32	39	-18
46	Propamocarb hydrochloride	F	31	33	-5
47	Mandipropamid	F	30	33	-11
48	Pyraflufen-ethyl	Н	30	30	0
49	Metazachlor	Н	28	23	20
50	Metribuzin	Н	27	25	7

⁽¹⁾ Pesticide type = F: Fungicide, G: Growth regulator, H: Herbicide, I: Insecticide, M: Molluscicide, S: Seed treatment. Note: some shorthand is used in this table: [z] = not applicable.

 Table 19
 Principal active substances by weight

Quantity (tonnes) of the 50 most used active substances, including seed treatments, on all crops surveyed

J	Active substance	Type ⁽¹⁾	2022	2020	% change
1	Folpet	F	201	112	80
2	Chlormequat	G	154	165	-7
3	Mancozeb	F	136	177	-24
4	Glyphosate	Н	104	160	-35
5	Pendimethalin	Н	68	80	-15
6	Prothioconazole	F/S	63	59	6
7	Mecoprop-p	Н	35	60	-42
8	Spiroxamine	F	30	22	37
9	Propamocarb hydrochloride	F	29	32	-9
10	Tebuconazole	S/F	27	21	27
11	Sulphur	F	22	38	-43
12	Fluroxypyr	Н	22	20	7
13	Flufenacet	Н	19	16	21
14	Metazachlor	Н	19	16	21
15	Metobromuron	Н	17	13	34
16	2-chloroethylphosphonic acid	G	16	9	77
17	Prosulfocarb	Н	13	21	-36
18	Mefentrifluconazole	F	13	4	237
19	Metribuzin	Н	12	11	8
20	Propyzamide	Н	10	9	14
21	Pyraclostrobin	F & F/G	10	5	84
22	Cymoxanil	F	9	14	-33
23	Diflufenican	Н	9	9	0
24	Mepiquat chloride	G & F/G	9	8	8
25	Fluxapyroxad	F/S	9	7	31
26	Chlorotoluron	Н	8	8	1
27	Azoxystrobin	F	8	6	35
28	Trinexapac-ethyl	G	8	6	30
29	Boscalid	F	6	10	-37
30	Ferric phosphate	М	6	8	-24
31	Ametoctradin	F	6	4	52
32	Dimethomorph	F	6	6	-3
33	Aclonifen	Н	6	3	134
34	Maleic hydrazide	G	6	4	46
35	Trifloxystrobin	F	6	8	-34
36	Bixafen	F	5	6	-7
37	Fluazinam	F	4	3	43
38	Mandipropamid	F	4	5	-13
39	Cyprodinil	F	4	6	-35
40	Cyazofamid	F	4	5	-25

Table 19 Principal active substances by weight - continued

Quantity (tonnes) of the 50 most used active substances, including seed treatments, on all crops surveyed

	Active substance	Type ⁽¹⁾	2022	2020	% change
41	Thifensulfuron-methyl	Н	3	4	-27
42	Flutolanil	S	3	4	-22
43	Picolinafen	Н	3	2	22
44	Fluoxastrobin	F	3	4	-25
45	Fluopyram	F/I/S	3	1	100
46	Amisulbrom	F	2	2	31
47	Fenpicoxamid	F	2	0	[z]
48	Benzovindiflupyr	F	2	1	104
49	Prochloraz	F	2	4	-55
50	Fluopicolide	F	2	2	-14

⁽¹⁾ Pesticide type = F: Fungicide, G: Growth regulator, H: Herbicide, I: Insecticide, M: Molluscicide, S: Seed treatment. Note: some shorthand is used in this table: [z] = not applicable.

Table 20 Total arable crop, comparison with previous years

Pesticide usage in 2018, 2020 and 2022, area treated with formulations and active substances (a.s) and the weight (kg) applied

2018 2020 2022 **Formulations Formulations** Weight **Formulations** Weight Weight a.s. a.s. a.s. ha ha kg ha kg ha kg ha ha Insecticides/ 5,019 202,792 202,792 8,616 199,483 207,500 10,190 182,493 182,493 nematicides 8,716 62,175 6,441 Molluscicides 75,033 75,033 88,431 84,493 9,223 62,175 3,273,378 3,233,754 **Fungicides** 2,128,624 636,729 2,128,892 646,406 2,160,858 3,140,709 597,858 Fungicides/ growth 0 0 0 0 6,275 18,826 1,894 0 0 regulators Sulphur 1,562 1,562 2,662 9,188 9,188 38,423 13,606 13,606 21,833 Herbicides/ 1,349,368 1,983,129 448,425 1,407,866 2,089,980 461,356 1,276,102 1,930,662 366,683 desiccants Growth 454,237 548,541 190,656 507,946 590,582 194,429 578,037 674,696 192,778 regulators Seed 420,451 747,314 15,997 451,037 720,003 12,072 405,883 678,965 9,833 treatments All pesticides 6,935,500 6,702,133 1,202,340 4,632,066 6,831,748 1,311,801 4,792,843 1,372,098 4,685,432 **Total area** 496,631 489,309 487,389 grown (ha)(1)

Note: Unspecified treatments have been included in the formulation and active substance areas, however as their weights are unknown, they cannot be included in the quantities applied. Total arable crop includes cereals, oilseeds, potatoes and legumes. It should be noted that there may be minor differences in the range of crops surveyed between years.

⁽¹⁾ Total area grown for 2018 and 2020 is taken from the June Agricultural Census. As there was no Census in 2022, the Total area grown in 2022 is taken from the SAF data. Please see Appendix 4 for further information.

Table 21 Cereals, comparison with previous years

Pesticide usage in 2018, 2020 and 2022, area treated with formulations and active substances (a.s) and the weight (kg) applied

		2018			2020			2022	
	Formulations	a.s.	Weight	Formulations	a.s.	Weight	Formulations	a.s.	Weight
	ha	ha	kg	ha	ha	kg	ha	ha	kg
Insecticides	78,127	78,127	385	63,269	63,269	291	46,316	46,316	245
Molluscicides	29,439	29,439	3,322	22,608	22,608	2,141	16,363	16,363	1,680
Fungicides	1,710,838	2,659,346	450,428	1,619,439	2,496,062	390,727	1,639,648	2,455,317	388,834
Sulphur	1,339	1,339	2,261	9,135	9,135	38,254	13,407	13,407	21,053
Herbicides/ desiccants	1,130,538	1,739,063	336,584	1,190,313	1,850,821	357,315	1,049,791	1,672,423	245,638
Growth regulators	448,775	537,939	188,943	501,530	580,099	189,739	570,570	661,629	186,091
Seed treatments	365,829	666,313	8,435	402,746	671,712	7,091	360,327	633,409	6,088
All pesticides	3,764,885	5,711,567	990,358	3,809,039	5,693,705	985,558	3,696,421	5,498,863	849,630
Total area grown (ha) ⁽¹⁾	al area grown		434,443			421,772			

⁽¹⁾ Total area grown for 2018 and 2020 is taken from the June Agricultural Census. As there was no Census in 2022, the Total area grown in 2022 is taken from the SAF data. Please see Appendix 4 for further information.

Note: Unspecified treatments have been included in the formulation and active substance areas, however as their weights are unknown, they cannot be included in the quantities applied. Cereals crops include winter barley, spring barley, winter wheat, spring wheat, winter oats, spring oats and winter rye. It should be noted that there may be minor differences in the range of crops surveyed between years.

 Table 22
 Potatoes comparison with previous years

Pesticide usage in 2018, 2020 and 2022, area treated with formulations and active substances (a.s.) and the weight (kg) applied

2018 2020 2022 **Formulations** Weight **Formulations** Weight **Formulations** Weight a.s. a.s. a.s. ha kg ha kg kg ha ha ha ha Insecticides/ 90,685 90,685 7,675 102,686 102,686 9,097 81,976 81,976 3,918 nematicides 21,676 2,955 41,906 3,283 Molluscicides 21,676 41,906 4,945 31,353 31,353 **Fungicides** 306,927 441,298 166,694 398,601 578,939 240,046 400,413 496,034 189,319 Herbicides/ 113,567 117,357 43,202 111,948 117,387 40,830 108,034 113,066 45,596 desiccants **Growth regulators** 323 323 775 1,277 1,277 3,830 1,869 5,606 1,869 25,048 25,048 7,239 25,150 25,150 4,888 23,804 23,804 3,739 Seed treatments 558,227 867,346 251,460 All pesticides 696,387 228,539 681,568 303,635 647.450 748,104 Total area grown 27,359 28,298 27,141 (ha)⁽¹⁾

Note: Unspecified treatments have been included in the formulation and active substance areas, however as their weights are unknown, they cannot be included in the quantities applied. Potatoes include seed potatoes and ware potatoes.

⁽¹⁾ Total area grown for 2018 and 2020 is taken from the June Agricultural Census. As there was no Census in 2022, the Total area grown in 2022 is taken from the SAF data. Please see Appendix 4 for further information.

Table 23 Oilseeds, comparison with previous years

Pesticide usage in 2018, 2020 and 2022, area treated with formulations and active substances (a.s) and the weight (kg) applied

2018 2020 2022 **Formulations Formulations Formulations** Weight Weight Weight a.s. a.s. a.s. ha kg ha kg kg ha ha ha ha Insecticides 33.353 33,353 551 41.369 41.369 801 53.831 53,831 854 Molluscicides 1,478 23,917 23,917 2,439 19,980 19,980 2,138 14,459 14,459 15,344 **Fungicides** 109.052 169,723 18,933 99,321 156.585 116,260 182,897 18,997 Fungicides/growth 6,275 18,826 1,894 0 0 0 0 0 0 regulators Sulphur 223 223 401 53 53 169 0 Herbicides/ 100,286 120,243 64,895 97,013 115,057 59,219 110,972 136,290 69,398 desiccants Growth regulators 5,139 10,279 938 4,603 9,206 859 5,599 11,197 1,082 29,574 55,953 323 22,944 22,944 93 21,752 Seed treatments 21,752 All pesticides 301,544 413,690 88,480 285,283 365,194 78,623 329,148 439,252 93,710 Total area grown 32,735 30,793 35,431 (ha)⁽¹⁾

Note: Unspecified treatments have been included in the formulation and active substance areas, however as their weights are unknown, they cannot be included in the quantities applied. Oilseeds includes linseed (2022 only), winter and spring oilseed rape. It should be noted that there may be minor differences in the range of crops surveyed between years.

⁽¹⁾ Total area grown for 2018 and 2020 is taken from the June Agricultural Census. As there was no Census in 2022, the Total area grown in 2022 is taken from the SAF data. Please see Appendix 4 for further information.

Appendix 2 – Survey statistics

Census and sample information

 Table 24
 Regional distribution of arable crops in 2022

Area (ha) of arable crops grown in Scotland

	H&I ⁽¹⁾	C&O ⁽¹⁾	Moray Firth	Abdn ⁽¹⁾	Angus	East Fife	Lothian	C. Low- lands ⁽¹⁾	Tweed Valley	S. Up- lands ⁽¹⁾	Solway	Scotland 2022	Scotland 2020	% change
Winter barley	129	186	1,725	12,351	7,039	3,318	3,826	5,135	6,208	1,060	3,197	44,174	43,091	3
Spring barley	4,262	7,461	37,020	73,766	41,723	11,799	10,956	25,765	12,844	3,432	6,789	235,816	258,702	-9
Wheat	84	*	4,680	10,911	24,653	13,789	16,741	9,843	21,678	1,142	3,496	107,117	93,538	15
Winter oats	*	*	*	867	1,095	1,988	296	678	2,785	399	143	8,436	7,984	6
Spring oats	348	1,935	1,355	3,253	2,861	2,343	1,361	2,541	2,204	153	360	18,713	26,000	-28
Winter rye	*	0	1,433	703	1,953	820	191	439	1,072	0	559	7,174	5,137	40
Triticale	*	0	*	141	*	*	0	106	0	0	*	347	448	-23
Winter oilseed rape	0	0	2,664	8,781	8,192	1,708	4,185	1,772	7,323	172	348	35,145	30,373	16
Spring oilseed rape ⁽²⁾	0	0	*	*	*	78	41	*	0	0	*	286	537	-47
Seed potatoes	230	30	1,823	2,382	5,258	393	72	1,170	465	*	29	11,894	12,003	-1
Ware potatoes	84	30	755	492	7,142	2,360	1,461	1,263	1,454	*	207	15,248	16,294	-6

Cont...

Table 24 Regional distribution of arable crops in 2022 - continued

Area (ha) of arable crops grown in Scotland

	H&I ⁽¹⁾	C&O ⁽¹⁾	Moray Firth	Abdn ⁽¹⁾	Angus	East Fife	Lothian	C. Low- lands ⁽¹⁾	Tweed Valley	S. Up- lands ⁽¹⁾	Solway	Scotland 2022	Scotland 2020	% change
Field beans	*	*	77	50	380	662	402	308	576	*	132	2,616	2,138	22
Dry harvest peas	0	21	63	102	*	69	*	30	68	0	0	410	328	25
Lupins	0	0	*	0	*	0	0	*	0	0	0	13	17	-22
Mixed grain	0	0	0	0	0	0	0	0	0	0	0	0	41	-100
Totals	5,161	9,797	51,810	113,835	100,360	39,327	39,567	49,119	56,678	6,416	15,319	487,389	496,631	-2

^{*} To prevent disclosure of information about individual holdings, entries relating to fewer than five holdings are not reported.

Note: areas grown for 2020 are taken from the 2020 June Agricultural Census. As there was no Census in 2022, the areas grown in 2022 are taken from the SAF data. Please see Appendix 4 for further information.

⁽¹⁾ H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, C. Lowlands = Central Low-lands, S. Up-lands = Southern Uplands.

⁽²⁾ Includes linseed.

Table 25 Distribution of arable sample - 2022

Number of holdings surveyed in each region and size group

Size (ha)	H&I ⁽¹⁾	C&O ⁽¹⁾	Moray Firth	Abdn ⁽¹⁾	Angus	East Fife	Lothian	C. Low- lands ⁽¹⁾	Tweed Valley	S. Up- lands ⁽¹⁾	Solway	Scotland
0.1-19.99	2	3	2	3	1	1	1	3	1	1	3	21
20-49.9	1	2	6	12	7	2	2	7	4	0	4	47
50-99.9	2	3	7	18	18	7	7	10	5	1	2	80
100-149.9	0	1	6	14	12	7	6	6	12	1	1	66
150+	0	0	13	23	25	11	19	6	18	1	2	118
All sizes	5	9	34	70	63	28	35	32	40	4	12	332

⁽¹⁾ H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, C. Low-lands = Central Lowlands, S. Uplands = Southern Uplands.

Table 26Sample area - 2022

Area (ha) of arable crops grown in sample

Size (ha)	H&I ⁽¹⁾	C&O ⁽¹⁾	Moray Firth	Abdn ⁽¹⁾	Angus	East Fife	Lothian	C. Low- lands ⁽¹⁾	Tweed Valley	S. Up- lands ⁽¹⁾	Solway	Scotland
0.1-19.99	18	25	22	33	11	42	8	21	10	17	22	228
20-49.9	28	59	186	397	216	51	68	251	160	0	81	1,494
50-99.9	114	186	521	1,324	1,214	413	442	657	317	98	117	5,401
100-149.9	0	130	786	1,741	1,414	800	765	726	1,546	143	105	8,154
150+	0	0	2,741	4,768	5,546	2,505	3,957	1,217	4,607	355	357	26,052
All sizes	159	399	4,255	8,262	8,400	3,811	5,240	2,871	6,639	613	681	41,329

⁽¹⁾ H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, C. Low-lands = Central Lowlands, S. Up-lands = Southern Uplands.

Table 27 SAF area - 2022

Area (ha) of arable crops grown in Scotland

Size (ha)	H&I ⁽¹⁾	C&O ⁽¹⁾	Moray Firth	Abdn ⁽¹⁾	Angus	East Fife	Lothian	C. Low- lands ⁽¹⁾	Tweed Valley	S. Uplands ⁽¹⁾	Solway	Scotland
0.1-19.99	1,399	3103	2,479	6,355	1,836	555	653	3,944	825	667	2,760	24,578
20-49.9	1,577	2222	7,117	16,448	9,369	3,464	2,454	9,324	2,897	1,011	4,913	60,797
50-99.9	1,427	1968	11,556	28,445	19,599	8,532	6,287	12,724	7,262	1,339	3,932	103,071
100-149.9	585	1078	9,130	19,601	16,517	8,459	7,362	7,962	10,136	1,632	1,414	83,875
150+	*	1424	21,529	42,985	53,039	18,317	22,810	15,165	35,558	1,767	2,300	215,067
All sizes	5,161	9,797	51,810	113,835	100,360	39,327	39,567	49,119	56,678	6,416	15,319	487,389

^{*} To prevent disclosure of information about individual holdings, entries relating to fewer than five holdings are not reported.

(1) H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, C. Low-lands = Central Lowlands, S. Uplands = Southern Uplands.

Table 28Raising factors - 2022

Size (ha)	H&I & C&O ⁽¹⁾	Moray Firth	Abdn ⁽¹⁾	Angus	East Fife	Lothian	C. Low- lands ⁽¹⁾	Tweed Valley	S. Uplands ⁽¹⁾	Solway
0.1-19.99	104.9620	113.5201	195.2452	169.5319	13.2245	78.3393	191.8259	85.1889	38.5078	126.2589
20-49.9	44.1543	38.3634	41.4693	43.4434	67.7869	36.2273	37.1663	18.1029	[z]	60.8301
50-99.9	11.3467	22.1773	21.4809	16.1467	20.6696	14.2188	19.3750	22.9427	13.6673	33.7484
100-149.9	12.8064	11.6218	11.2611	11.6825	10.5710	9.6257	10.9746	6.5580	11.3953	13.4797
150+	[z]	7.8554	9.0148	9.5635	7.3123	5.7649	12.4582	7.7187	4.9847	6.4438

⁽¹⁾ H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, C. Low-lands = Central Lowlands, S. Uplands = Southern Uplands.

Note: some shorthand is used in this table: [z] = not applicable.

 Table 29
 First and second adjustment factors - 2022

	H&I & C&O ⁽¹⁾	Moray Firth	Abdn ⁽¹⁾	Angus	East Fife	Lothian	C. Low- lands ⁽¹⁾	Tweed Valley	S. Uplands ⁽¹⁾	Solway	ADJ2
Winter barley	0.9721	1.6197	0.9821	0.8645	0.6334	0.8147	0.8816	1.2325	1.1086	0.7284	1.0000
Spring barley	1.1154	0.9093	0.9936	0.9890	1.0158	1.0889	1.0239	0.8432	2.8907	0.8957	1.0000
Total wheat	[z]	0.9051	0.9982	1.0521	0.9859	0.9715	1.1016	1.0842	0.4768	3.2893	1.0017
Winter oats	[z]	[z]	0.6566	1.8637	1.1293	1.2734	0.5812	0.7560	0.8700	[z]	1.0404
Spring oats	1.0280	0.6233	1.0941	1.1702	1.4439	0.9407	0.7057	0.8800	[z]	0.2635	1.0082
Winter rye	[z]	[z]	1.1376	0.4707	1.4379	[z]	[z]	0.5736	[z]	1.8655	1.4049
Triticale	[z]	[z]	0.1452	0.1046	[z]	[z]	0.2481	[z]	[z]	[z]	1.3233
Spring oilseed rape	[z]	[z]	[z]	[z]	0.3231	[z]	[z]	[z]	[z]	0.1702	3.5580
Winter oilseed rape	[z]	1.6606	1.0714	1.0559	1.2208	1.4192	0.8065	1.0900	0.4436	[z]	1.0100
Linseed	[z]	[z]	[z]	[z]	[z]	0.1769	[z]	[z]	[z]	[z]	27.1176
Seed potatoes	1.4472	2.5834	2.5774	0.7922	1.5202	[z]	2.7889	4.1568	2.2379	0.1042	1.0060
Ware potatoes	0.8982	3.9845	1.4291	1.5996	1.3284	0.6824	2.0464	1.5338	[z]	[z]	1.0137
Dry harvest peas	[z]	0.7144	0.1368	[z]	[z]	0.5189	[z]	[z]	[z]	[z]	2.0582
Field beans	[z]	0.7500	[z]	0.9219	0.6610	0.5540	0.4000	0.9987	[z]	0.7578	1.0309

⁽¹⁾ H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, C. Low-lands = Central Lowlands, S. Uplands = Southern Uplands

Note: some shorthand is used in this table: [z] = not applicable.

Response rates

The table below summarises the number of holdings contacted during the survey.

 Table 30
 Response rate

	2022	Percentage total
Target sample	350	100
Total achieved	332	95
Total number of refusals/non-contact	174	
Total number of farms approached	506	

Financial burden to farmers

In order to minimise the burden on farmers the survey team used non-visit methods of collection such as email, post or telephone call, where possible.

To determine the total burden that the 2022 arable crop survey placed on those providing the information, the surveyors recorded the time that 310 respondents spent providing the data during the survey. This sample represents 93 per cent of growers surveyed. The median time taken to provide the information was 20 minutes.

The following formula was used to estimate the total cost of participating: Burden (£) = No. surveyed x median time taken (hours) x typical hourly rate* (* using median "Full Time Gross" hourly pay for Scotland of £16.69)⁽¹⁵⁾ The total financial burden to all growers resulting from participation in the

2022 arable crop survey was calculated to be £1,847.

Appendix 3 – Definitions and notes

- 1) 'Pesticide' is used throughout this report to include commercial formulations containing active substances (a.s.) used as herbicides, fungicides, insecticides, molluscicides, nematicides, biological control agents, biopesticides, growth regulators, seed treatments and physical control. A pesticide product consists of one or more active substances co-formulated with other materials.
- 2) An **active substance** (or active ingredient) is any substance or microorganism which has a general or specific action: against harmful organisms; or on plants, parts of plants or plant products.
- 3) In this report the term '**formulation**(s)' is used to describe the pesticide active substance or mixture of active substances in a product(s). It does not refer to any of the solvents, pH modifiers or adjuvants also contained within a product that contribute to its efficacy.
- 4) A **fungicide** is a pesticide used to control fungal diseases in plants.
- 5) A **herbicide** is a pesticide used to control unwanted vegetation (weed killer). A **desiccant** is a pesticide used to dry out unwanted plant material.
- 6) A **growth regulator** is a pesticide used to regulate the growth of the plant, for example to prevent the crop from growing too tall.
- 7) An **insecticide** is a pesticide used to control unwanted insects. A **nematicide** is a pesticide used to control unwanted nematodes.
- 8) A **molluscicide** is a pesticide used to control unwanted slugs and snails.
- 9) A **seed treatment** is a pesticide applied to seed before planting to protect that plant against diseases and pests from the earliest stage of development. The pesticide can be a fungicide, an insecticide or a biological control agent.
- 10) In the pesticide tables, some pesticide treatments may be reported as 'unspecified'. This description was used for occasions where the use of a particular treatment was reported by the grower, but they were unable to provide details of the product used. For these treatments, we are able to provide an area treated but no weight of pesticide used since the exact pesticide is unknown.
- 11) Some seed treatments were recorded as 'no information seed treatment'. This description was used for occasions where the grower was unable to confirm whether the seed had received a treatment.
- 12) **Basic area** is the planted area of crop which was treated with a given pesticide or pesticide group, irrespective of the number of times it was applied to that area. Basic areas are not presented anywhere in the report, but their values are used to calculate the percentage of crop treated with a given pesticide or pesticide group.
- 13) **Area treated** is the basic area of a crop treated with a given pesticide multiplied by the number of treatments that area received. These terms are synonymous with "spray area" and "spray hectare" which have appeared in previous reports. For example, if a field of five hectares is sprayed with the

same fungicide twice, the basic area is five hectares, and the treated area is 10 hectares.

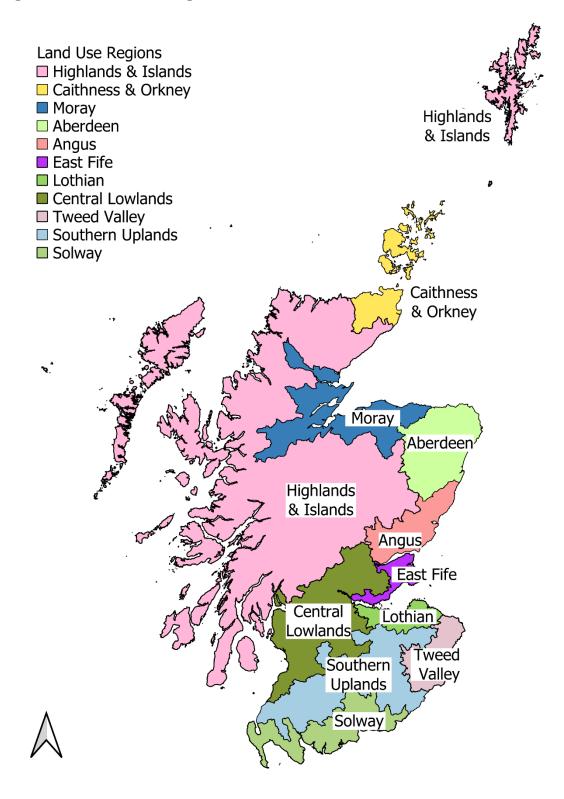
- 14) Farmers/growers can apply pesticides to crops by a number of different methods. Multiple pesticides can be applied to a crop in a single tank mix. For example, a crop could be sprayed with two different fungicides and an insecticide at the same time.
- 15) In this report data are reported in two formats. For each pesticide formulation (mixture of active substances in a product) the area treated and weight applied is reported. Areas and weights for individual active substances are not included in this report but are published in Excel format as supplementary tables. These different formats are provided to satisfy the needs of all data users and allow them to assess pesticide use trends. Some users may be interested in use of pesticide products which contain a number of active substances, thus formulation data would be required. Other users are interested in particular active substances which may be formulated on their own or in combination with other active substances. In addition, both weight and area of pesticide applications are important indicators of changes in use over time. Different pesticides are applied at different dose rates and only by comparing both area and weight can trends in use be elucidated.
- 16) It should be noted that some herbicides may not have been applied directly to the crop itself but either as land preparation treatments prior to sowing/planting the crop, or to control weeds at the field margins.
- 17) The **June Agricultural Census**⁽¹⁶⁾ is conducted annually by the Scottish Government's Rural and Environmental Science Analytical Services (RESAS). The June Agricultural Census collects data on land use, crop areas, livestock and the number of people working on agricultural holdings. As there was no census conducted in 2022 (see changes from previous years section), for this report, the 2022 Single Application Form (SAF) data was used to draw a sample of farmers growing the relevant crops to participate in the survey.
- 18) Throughout this report the term 'census area' refers to the total area for a particular crop or group of crops recorded within the June Agricultural Census. These are the areas which the sample areas are raised to. Please see Appendix 4 survey methodology for details. The June Agricultural Census Form is divided up into different categories which relates to a particular crop or group of crops. These are referred to as 'census categories' throughout this report.
- 19) During the survey, the wheat crop is differentiated as either winter wheat or spring wheat. In the census/SAF, wheat is not subdivided. Any data from the census refers to the wheat crop as 'total wheat', but the survey data refers to winter and spring wheat.
- 20) There were a limited number of holdings with triticale, winter rye and linseed sampled. Therefore, no details of pesticide use on these crops are reported separately. However pesticide use on triticale, winter rye and linseed are included in the totals for 'all cereals' in the pesticide usage tables.

- 20) Where quoted in the text, reasons for application are the grower's stated reasons for use of that particular pesticide on that crop and may not always seem appropriate.
- 21) Due to rounding, there may be slight differences in totals both within and between tables.
- 22) Data from the 2018⁽⁴⁾ and 2020⁽³⁾ surveys are provided for comparison purposes in some of the tables, although it should be noted that there may be minor differences in the range of crops surveyed, together with changes in areas of each of the crops grown. Changes from previous surveys are described in Appendix 4. When comparisons are made between surveys it is important to consider changes in the area of crop grown. In order to take this into account, comparisons have been made on a per hectare grown basis, i.e. the number of hectares that have been sprayed (treated hectares) has been divided by the area of crop grown for each survey, and the weight (kilograms) applied has also been divided by the area of crop grown. This is to enable like for like comparisons between surveys, so that changes in pesticide use patterns are not masked by changes in crop area.
- 23) The **average number of applications** indicated in the text for each crop is based on the occurrence of a pesticide group on at least 10 per cent of the area grown. The average number of applications is calculated only on the areas receiving each pesticide group and therefore the minimum number of applications is always one. Several pesticides may be applied as a tank mix as part of the same spray event; therefore the average number of pesticide sprays reported is less than the sum of sprays of each pesticide group.
- 24) The crop type '**dry harvest peas'** is used for consistency with the Fera Science Ltd UK pesticide usage reports. This equates to peas for combining on the Scottish Agricultural Census form and is synonymous with 'combine peas' which appeared in previous Scottish reports.

Appendix 4 – Survey methodology

Sampling and data collection

Using the May 2022 Single Application Form (SAF) data, a sample was drawn representing arable cultivation in Scotland. The country was divided into 11 land-use regions (Figure 31). Each sample was stratified by these land-use regions and according to holding size. The sampling fractions used within both regions and size groups were based on the areas of relevant crops grown rather than number of holdings, so that smaller holdings would not dominate the sample.


The survey covered pesticide applications to arable crops where all, or the majority, of the growing season was in 2022. As well as recording treatments applied directly to the crop, data was also collected on land preparation treatments prior to sowing or planting the crop.

Following an introductory letter and phone call, data were collected during a phone interview or by email. Where necessary, information was also collected from agronomists and contractors. In total, information was collected from 332 holdings growing arable crops (Table 26). These holdings represent eight per cent of the total crop area grown.

Raising factors

National pesticide use was estimated by ratio raising. This is a standard statistical technique for producing estimates from a sample. It is the same methodology used by the other UK survey teams and has been used for all historical datasets produced by the Pesticide Survey Unit, allowing comparability over time. The sample data were multiplied by raising factors (Tables 29). These factors were calculated by comparing the sample area to the areas recorded in the May 2022 SAF data within each region and size group (please see changes from previous years section for further detail). An adjustment (Table 29) was made for each crop within each region by applying the raising factors to the sample area of each crop grown and comparing this with the SAF area. This adjustment modifies the estimate to take into account differences in composition of crops encountered in the sample and those present in the population. A second adjustment was necessary for some crops which were present in the population but were not encountered in the sample in some strata.

Figure 22 Land use regions of Scotland⁽¹⁷⁾

Changes from previous years

There are changes which should be noted when comparing the 2022 data with the previous survey.

For previous reports, the June Agricultural Census was used to draw a sample of farmers growing the relevant crops to participate in the survey. National pesticide use was then estimated by ratio raising, by comparing the sample area to the areas recorded in the June Agricultural Census data.

To allow for the Agricultural Statistics Transformation Programme⁽¹⁸⁾, the June 2022 Agricultural Census was paused. This pause was agreed with the Office for Statistical Regulation and data users.

For this report, the May 2022 Single Application Form (SAF) data was used to draw the sample and estimate national pesticide use using the same methodology as previous surveys. SAF data accounts for the majority of land area for arable crops. The sample drawn is based on area of crop grown, rather than number of holdings. As such, no attempt is made to account for holdings that are not captured by SAF returns. (Note: The difference in total Scottish arable area recorded between SAF 2022 and Agricultural Census 2021 was less than one per cent. The largest difference was biased towards the smaller size groups, less than five per cent of a difference).

Some data published in previous reports such as modes of action data, reasons for use and timing of application data have been excluded from the current survey due to resource and time constraints.

The 2020 report contained information about grower adoption of Integrated Pest Management (IPM). IPM data was not collected during the 2022 survey. It is anticipated that IPM data will be collected and published every 4 years. This allows IPM uptake to be monitored over time but reduces the burden on growers and surveyors.

Data quality assurance

The dataset underwent several validation processes as follows; (i) checking for any obvious errors upon data receipt (ii) checking and identifying inconsistencies with use and pesticide approval conditions once entered into the database (iii) checking of data held in the database against the raw data. Where inconsistencies are found these are checked against the records and with the grower if necessary. Additional quality assurance is provided by sending reports for review to members of the Working Party on Pesticide Usage Surveys and other agricultural experts. In addition, the Scottish Pesticide Survey Unit is accredited to ISO 9001:2015. All survey related processes are documented in Standard Operating Procedures (SOPs) and our output is audited against these SOPs by internal auditors annually and by external auditors every three years.

Main sources of bias

The use of a random stratified sample is an appropriate survey methodology. A stratified random sample, grouped by farm size and region, is used to select holdings used in this survey. Sampling within size groups is based on area rather than numbers of holdings, so that smaller size groups are not over-represented in the sample. The pesticide survey may be subject to

measurement bias as it is reliant on farmers/growers recording data accurately. As this survey is not compulsory it may also subject to non-response bias, as growers on certain farm/holding types may be more likely to respond to the survey than others. Reserve lists of holdings are held for each stratum to allow non-responding holdings to be replaced with similar holdings.

Experience indicates that stratified random sampling, including reserves, coupled with personal interview technique, delivers the highest quality data and minimises non-response bias.

Appendix 5 – Standard errors

The figures presented in this report are produced from surveying a sample of holdings rather than a census of all the holdings in Scotland. Therefore, the figures are estimates of the total pesticide use for Scotland and should not be interpreted as exact. To give an idea of the precision of estimates, the report includes relative standard errors (RSE) (Table 32). Standard errors are produced using the raising factors. An overall variance is calculated by summing the variance estimates for individual strata (region and size group) multiplied by the square of their raising factors. These variance estimates include a finite population correction. The overall standard error is calculated from the overall variance by taking its square root. This method of standard estimation was implemented as it is both relatively straightforward and has advantages over ratio estimator methods when within-strata sample sizes are small.

Standard errors are expressed as percentage relative standard errors (Table 32) for both total pesticide use by area treated and for weight applied. Larger relative standard errors mean that the estimates are less precise. A relative standard error of zero per cent would be achieved by a census. A relative standard error of 100 per cent indicates that the error in the survey is of the same order as the measurement. Relative standard errors may be reduced with larger sample sizes. However, larger relative standard errors can also result from greater variability in pesticide use among holdings.

The RSE for estimates of total pesticide use on arable crops (Table 32) was three per cent for area and four per cent for weight, the same as in 2020. For constituent crop groups, the RSE varied from four to 44 per cent for area and four to 61 per cent for weight, varying with sample size and uniformity of pesticide regime encountered. For spring oilseed rape, linseed and dry harvest peas, a standard error could not be calculated due to too few active substances being recorded; therefore, pesticide estimates for these crops should be treated with caution. Higher standard errors mean that there is more uncertainty associated with estimates of pesticide use.

Table 31 Relative standard errors - 2022

Relative standard errors (RSE) for the area treated (ha) with pesticide and for weight of active substance (kg) applied

	Area SE (%)	Weight SE (%)
Winter barley ⁽¹⁾	5	6
Spring barley	4	4
Wheat (winter and spring) ⁽¹⁾	5	6
Winter oats ⁽¹⁾	13	14
Spring oats ⁽¹⁾	9	13
Winter rye	44	61
Winter oilseed rape	6	6
Spring oilseed rape ⁽²⁾	NC	NC
Linseed ⁽²⁾	NC	NC
Seed potatoes	13	14
Maincrop potatoes ⁽¹⁾	10	12
Dry harvest peas ⁽²⁾	NC	NC
Field beans ⁽¹⁾	20	21
All pesticides	3	4

⁽¹⁾ For these crops standard errors could not be calculated for all strata due to insufficient data in the sample, as these strata have not been used in the aggregate totals for the region the overall RSE values should be treated with caution.

⁽²⁾ Standard errors could not be calculated (NC) for spring oilseed rape, linseed and dry harvest peas because there were too few active substances recorded. Therefore, estimates for these crops should be treated with caution.

Acknowledgements

The authors would like to thank all the farmers, agronomists, contractors and seed merchants who agreed to provide information for this survey. Thanks are also due to Gillian Reay and Jackie Hughes (SASA), Fiona Burnett (SRUC), Sara Cook (ADAS) and Ingrid den Hoed (CRD) for editorial assistance. In addition, the authors are grateful for support and advice from Lewis Ridley and David Garthwaite at Fera Science Ltd, Paul Gavin at the Scottish Government's Agricultural Census Analysis Team and Adrian Roberts of Biomathematics & Statistics Scotland.

References

- Food and Environment Protection Act 1985: http://www.legislation.gov.uk/ukpga/1985/48 [Accessed 03 Oct 2023]
- Regulation (EC) 1185/2009: Regulation (EC) No 1185/2009 of the European Parliament and of the Council of 25 November 2009 concerning statistics on pesticides (Text with EEA relevance) (legislation.gov.uk) [Accessed 03 Oct 2023]
- Davis, C., Wardlaw, J., Monie, C. & MacLeod, C. (2021) Pesticide Usage in Scotland, Arable Crops 2020, Scottish Government: https://www.sasa.gov.uk/document-library/arable-crops-and-potato-stores-2020 [Accessed 03 Oct 2023]
- Wardlaw, J., Davis, C., Monie, C. & Reay, G. (2019) Pesticide Usage in Scotland, Arable Crops 2018, Scottish Government https://www.sasa.gov.uk/document-library/arable-crops-and-potato-stores-2018 [Accessed 03 Oct 2023]
- 5. SRUC Crop Health Monitoring. Annual Report, 1 March 2022 31 March 2023
- 6. SRUC Crop Protection Report. Issue 6, 28 April 2022
- 7. SRUC Crop Health Monitoring. Second Quarter Report, 1 July 2022 30 September 2022
- 8. SRUC Crop Protection Report. Issue 15, 1 September 2022
- 9. SRUC Crop Protection Report. Issue 17/20, 30 September 2021
- 10. SRUC Crop Protection Report. Issue 18/20, 14 October 2021
- 11. SRUC Crop Protection Report. Issue 08/20, 26 May 2022
- 12. Met Office UK and regional series Met Office [Accessed 09 Oct 2023]
- 13. SRUC Crop Protection report. East edition. Issue 19/14. 15 August 2019

- 14. Farm Advisory Service. Potatoes Update Mid August 2020 | Helping farmers in Scotland | Farm Advisory Service (fas.scot) [Accessed 09 Oct 2023]
- 15. Annual Survey of Hours and Earnings (ASHE) 2022 (Table 3.5a) https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/regionbyoccupation2digitsocashetable3 [Accessed 09 Oct 2023]
- 16. Agricultural Statistics, Scotland 2021. HMSO, Edinburgh 2021
- 17. Wood, H.J. An Agricultural Atlas of Scotland. George Gill and Sons, London, 1931.
- 18. Agricultural Statistics Transformation Programme https://blogs.gov.scot/statistics/2021/10/29/agricultural-statistics-transformation-programme-begins/ [Accessed 09 Oct 2023]

Pesticide Usage in Scotland

Potato Stores 2022

G. Reay, C. Davis, J. Wardlaw, C. MacLeod and A. Robertson

SASA

Roddinglaw Road, Edinburgh, Scotland, EH12 9FJ

Executive summary

This report presents information from a survey of pesticide use on stored potatoes harvested in Scotland in 2022. Data were collected from 73 growers, who collectively cultivated 28 per cent of the area of potatoes grown in Scotland. Pesticide use in potato stores was recorded for crops grown for seed production and for consumption (ware potatoes). Ratio raising was used to produce estimates of national pesticide usage from the sample data.

The overall estimated quantity of potatoes stored in Scotland in 2022 was ca 951,000 tonnes, a slight decrease of four per cent compared with the previous survey in 2020 and a nine per cent increase compared with 2018. Seed potato storage decreased by an estimated 15 per cent to ca. 332,700 tonnes. Ware potato storage increased by an estimated four percent to ca. 618,400 tonnes. However, there has been a significant change in survey estimation methodology which must be taken into account when comparing storage data from this survey and previous surveys.

Seventy eight per cent of seed and 82 per cent of ware potatoes sampled in 2022 were stored in refrigerated stores. The majority of the remaining stores were ambient ventilated stores. All the potatoes surveyed were stored in boxes.

The proportion of seed potatoes treated with a pesticide in 2022 was 25 per cent. This is lower than the 39 per cent treated in 2020 but similar to the proportion treated in 2018 (28 per cent). The proportion of stored ware potatoes treated with a pesticide in 2022 was eight per cent, similar to the six per cent treated in 2020, but lower than the 13 per cent treated in 2018.

The only pesticide encountered on seed potatoes was the fungicide imazalil, applied to an estimated 25 per cent of the stored crop for control of a range of tuber diseases. Imazalil was also the principal pesticide encountered in 2020.

As in 2020, the principal pesticide used on ware potatoes in 2022 was the growth regulator ethylene applied to an estimated four per cent of the stored ware crop, compared with four percent in 2020 and eight per cent in 2018. The sprout suppressant spearmint oil was applied to an estimated three per cent of the stored ware potato crop in 2022, similar to the one and two per cent treated in 2020 and 2018 respectively. Another sprout suppressant, 1,4-dimethylnaphthalene was applied to an estimated one per cent. This new active substance was only approved for use in potato stores from August 2022. Chlorpropham (which was withdrawn in 2020) had been the principal active substance in 2018 and 2016 (applied to nine and ten per cent respectively). Less than 0.5 per cent of the stored crop was treated with a fungicide in 2020.

Introduction

The Scottish Government (SG) is required by legislation⁽¹⁾⁽²⁾ to carry out post-approval surveillance of pesticide use. This is conducted by the Pesticide Survey Unit at SASA, a division of the Scottish Government's Agriculture and Rural Economy Directorate.

This survey is part of a series of annual reports which are produced to detail pesticide usage in Scotland for arable, vegetable and soft fruit crops on a biennial basis and for fodder and forage crops every four years. The Scottish survey data are incorporated with England, Wales, and Northern Ireland data to provide estimates of annual UK-wide pesticide use. Information on all aspects of pesticide usage in the United Kingdom as a whole may be obtained from the Pesticide Usage Survey Team at Fera Science Ltd, Sand Hutton, York, or visit the Fera website.

An Accredited Official Statistics Publication for Scotland

These statistics are accredited official statistics. The Office for Statistics Regulation has independently reviewed and accredited these statistics as complying with the standards of trustworthiness, quality, and value in the Code of Practice for Statistics.

The Scottish Pesticide Usage reports have been <u>accredited official statistics</u> since October 2014.

Accredited official statistics are called National Statistics in the <u>Statistics and Registration Service Act 2007</u>.

Scottish Government statistics are regulated by the Office for Statistics Regulation (OSR). OSR sets the standards of trustworthiness, quality and value in the <u>Code of Practice for Statistics</u> that all producers of official statistics should adhere to.

As well as working closely with Scottish Government statisticians, SASA receive survey specific statistical support from Biomathematics and Statistics Scotland (BioSS).

All reports are produced according to a published timetable. For further information in relation to Pesticide Survey Unit publications and their compliance with the code of practice please refer to the pesticide usage survey section of the SASA website. The website also contains other useful documentation such as privacy and revision policies, user feedback and detailed background information on survey methodology and data uses.

Additional information regarding pesticide use can be supplied by the Pesticide Survey Unit. Please email psu@sasa.gov.scot or visit our website.

Structure of report and how to use these statistics

This report is intended to provide data in a useful format to a wide variety of data users. The general trends section provides commentary on recent changes in survey data and longer-term trends. The 2022 pesticide usage section summarises pesticide use on stored potatoes in 2022. Appendix 1 presents estimated pesticide usage data. Appendix 2 summarises survey statistics including census and holding information, raising factors and the financial burden to farmers. Appendix 3 defines many of the terms used throughout the report. Appendix 4 describes the methods used during sampling, data collection and analysis as well as measures undertaken to avoid bias and reduce uncertainty. Any changes in method from previous survey years are also explained.

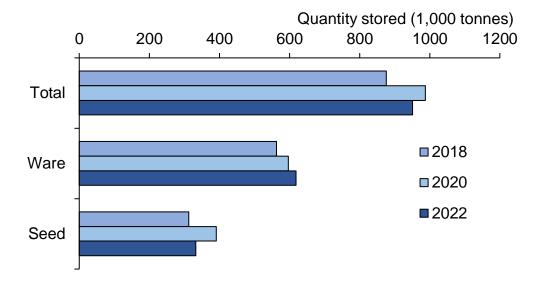
It is important to note that the figures presented in this report are produced from surveying a sample of holdings rather than a census of all the holdings in Scotland. Therefore, the figures are estimates of the total pesticide use for Scotland and should not be interpreted as exact.

General trends

Scottish potato storage

The total estimated quantity of potatoes stored in Scotland in 2022 was 951,194 tonnes. This is four per cent less than the 987,615 tonnes reported in 2020⁽³⁾ and nine per cent more than the estimated 875,687 tonnes in 2018⁽⁴⁾. However, there has been a significant change in survey methodology which must be taken into account when comparing data from this survey and previous surveys (see Appendix 4 – changes from previous years for further information).

The quantity of seed potatoes stored in 2022 was estimated to be 332,745 tonnes, representing a 15 per cent decrease in stored seed potatoes since the previous survey in 2020 and a six percent increase since 2018.

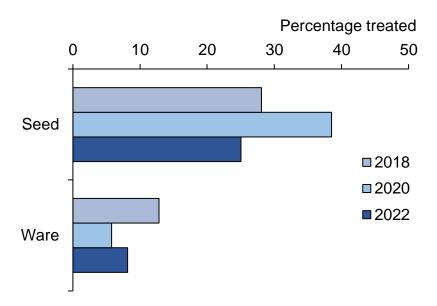

The estimated quantity of ware potatoes stored in 2022 was 618,449 tonnes, representing a four per cent increase from 2020 and a ten per cent increase from 2018.

As in 2020 and 2018, all potatoes surveyed in 2022 were stored in boxes. Seed crops were mainly held in refrigerated stores (78 per cent) with the remainder in ambient ventilated stores (22 per cent). There were no seed potatoes encountered in unventilated stores in 2022 (<0.5 per cent in 2020). The majority of seed crops were also held in refrigerated stores in 2020 and 2018 (60 and 67 per cent respectively).

Ware potatoes were mostly refrigerated in 2022 (82 per cent) with 17 per cent in ambient ventilated stores and a very small proportion in unventilated stores (<0.5 per cent). The proportion of ware potatoes refrigerated was similar in 2022 compared to 2020 (86 per cent). However, prior to this the proportion of

ware potatoes held in refrigerated stores steadily increased (80, 77 and 66 per cent in 2018, 2016 and 2014 respectively).

Figure 1 Estimated total potato storage in Scotland 2018-2022


Please note, there has been a significant change in survey methodology which must be taken into account when comparing data from 2022 and previous surveys, see Appendix 4 for further information. The above figure presents the estimated total potato storage in Scotland for 2018 using the methodology from the 2020 survey (not the 2018 survey) for comparison purposes.

Pesticide usage

Seed potatoes

The proportion of seed potatoes treated with a pesticide in 2022 was 25 per cent. This is lower than the 39 per cent treated in 2020 but similar to the proportion treated in 2018 (28 per cent). Seed potatoes were lifted in good condition in 2022, which reduced the risk of rots associated with wet soils and a heavy soil loading at harvest⁽⁵⁾, which may have influenced the decline in pesticide use in store. Likewise, pesticide use on seed potatoes in 2018 was considered to be low, with the assumption that this was influenced by the good quality of seed potatoes harvested that year.

Figure 2 Percentage of stored potatoes treated with pesticides in Scotland 2018-2022

The only active substance encountered in seed potato stores in 2022 was the fungicide imazalil applied to 25 per cent of the seed crop (Figure 3, Table 2). Imazalil was also the most commonly used fungicide in 2020 and 2018 applied to 38 and 26 per cent of the seed crops respectively. No thiabendazole use was encountered on seed crops in 2022. Its use has declined in recent years (eight per cent in 2018 and four per cent in 2020) which may have been influenced by the occurrence of resistance to thiabendazole in some storage diseases⁽⁶⁾.

Prior to 2018 the most commonly used fungicide was a formulation of imazalil/thiabendazole which was applied to 27 per cent of stored seed in 2016 and 40 per cent in 2014. This imazalil/thiabendazole formulation lost approval in 2015 and had a final use date of June 2017.

No ethylene was recorded on stored seed potatoes in 2022 or in 2020. In the three surveys prior to 2020 a small proportion (<1 per cent) of stored seed potatoes were treated with ethylene. In these previous surveys, ethylene use on seed potatoes was only encountered in one commercial store which is nolonger operating. Ethylene, which is generated from ethanol, is not approved

as a plant protection product for stored seed potatoes. However, it is approved as a commodity substance for plant growth regulation for post-harvest crops under COPR⁽⁷⁾.

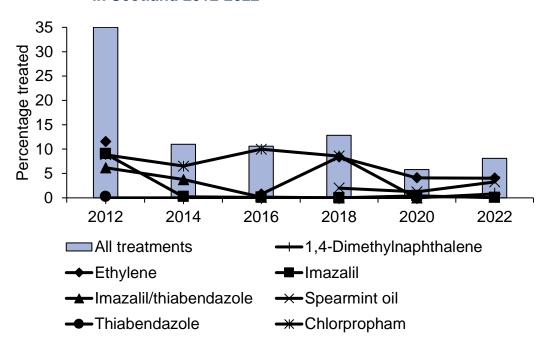
50 Percentage treated 40 30 20 10 0 2012 2018 2014 2016 2020 2022 **→**Ethylene All treatments ---Imazalil → Imazalil/thiabendazole

Figure 3 Percentage of stored seed potatoes treated with a pesticide in Scotland 2012-2022

Ware potatoes

Thiabendazole

The proportion of stored ware potatoes treated with a pesticide in 2022 was eight per cent, similar to the six per cent in 2020, but lower than the 13 per cent in 2018 (Figure 2). The decrease in the proportion of the ware crop treated between 2018 and 2020 may have been influenced by the reduced number of approved products available following the loss of the growth regulator active substance chlorpropham.


Similar to the previous survey, less than 0.5 per cent of the stored crop was treated with a fungicide in 2022. Historically, with the exception of 2012, which was an outlier, less than five per cent of stored ware potatoes have been treated with a fungicide over the last decade. Imazalil, the only fungicide encountered in ware potato stores in 2022, is not approved as a plant protection product for stored ware potatoes. It was applied to seed crops which were later reclassified as ware. During 2023, Scottish Government officials wrote to seed potato growers highlighting that imazalil treated crops cannot be used for human or animal consumption.

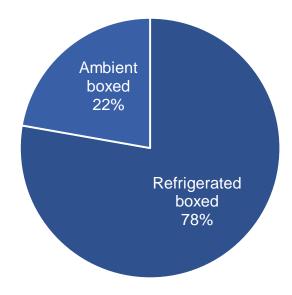
Almost all the pesticides used in ware stores were growth regulators (>99 per cent, Figure 4). 1,4-dimethylnaphthalene, a sprout suppressant approved for use in potato stores in August 22, was applied to an estimated one per cent of ware potatoes. This active may in future increase in use as chlorpropham which had been the principal active substance in 2018 and 2016 (applied to nine and ten per cent respectively) was withdrawn in 2020.

Ethylene was applied to an estimated four per cent of the stored ware potato crop in 2022 and 2020, compared with eight per cent in 2018. Spearmint oil,

which is a sprout suppressant, applied as a fog in store, was applied to an estimated three per cent of the stored ware potato crop in 2022, similar to previous surveys (one per cent in 2020 and two per cent in 2018). It is worth noting, since the loss of chlorpropham in 2020, there has not been a significant increase in the use of other growth regulators in store. However, an increase in the use of maleic hydrazide, applied as a field treatment to prevent sprouting during storage was recorded in the recent Pesticide Usage in Arable Crop reports. Maleic hydrazide was applied to 12 per cent of the ware crop in 2022, compared to eight per cent in 2020 and two per cent in 2018. Although it should be noted that the use of growth regulators has shown variation over time, as have the compounds encountered (Figure 4) and it is difficult to interpret trends within this data series.

Figure 4 Percentage of stored ware potatoes treated with a pesticide in Scotland 2012-2022

Note: this figure corrects some minor errors published in previous reports. Previously, the percentage of stored ware potatoes treated was calculated using the total tonnage treated, rather than basic tonnage treated. See Appendix 3 for definitions. The difference in the percentage of stored ware potatoes treated with a pesticide between methods is low (less than one per cent for all treatments except for chlorpropham, which is impacted by one and two per cent in 2012, 2014 and 2018, and seven per cent in 2016).


2022 Potato storage and pesticide usage Seed potatoes

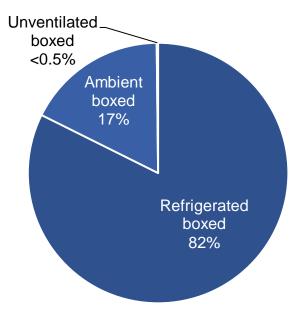
- An estimated 332,745 tonnes of seed potatoes were stored in Scotland in 2022, compared with an estimated 391,208 tonnes stored in 2020
- 78 per cent of seed potatoes were stored in refrigerated stores and 22 per cent in ambient ventilated stores (Figure 5)
- All seed potatoes sampled in 2022 were stored in boxes
- Overall, 25 per cent of seed potatoes received a pesticide treatment in store
- The percentage of seed potatoes receiving an in-store pesticide treatment was 53 per cent in ambient ventilated stores and 17 per cent in refrigerated stores (Table 1)
- The fungicide imazalil was the only active substance encountered in seed potatoes (summary below)
- Imazalil is applied as a spray to tubers
- Reasons for use were supplied for 95 per cent of the crop which was treated with fungicides. General storage diseases was the only reason supplied

Summary of estimated pesticide use on seed potatoes in store:

Pesticide formulation	Total tonnes treated	Percentage treated
Imazalil	83,276	25

Figure 5 Seed potato storage by type – 2022

Ware potatoes


- An estimated 618,449 tonnes of ware potatoes were stored in Scotland in 2022, compared with the estimated 596,407 tonnes stored in 2020
- 82 per cent of ware potatoes were stored in refrigerated stores, 17 per cent were stored in ambient ventilated stores and less than one per cent in unventilated stores (Figure 6)
- All ware potatoes sampled were stored in boxes
- Eight per cent of ware potatoes received a pesticide treatment in store
- The percentage of ware potatoes receiving an in-store pesticide treatment was seven and 14 per cent in refrigerated stores and ambient ventilated stores respectively (Table 1)
- One fungicide (imazalil) and three growth regulators (ethylene, spearmint oil & 1,4-dimethylnaphthalene) were encountered in ware potato stores (summary below)
- Imazalil is applied as a spray to tubers. Ethylene is applied as a gas, spearmint oil and 1,4-dimethylnaphthalene are applied as a fog to stores
- Reasons for use were supplied for less than 0.5 per cent of the crop which was treated with fungicides. Storage diseases was the only reason given
- The only specified reason for use of growth regulators was sprout suppression

Summary of estimated pesticide use on ware potatoes in store:

Pesticide formulation	Total tonnes treated	Percentage treated		
1,4-dimethylnaphthalene	10,024	1		
Ethylene	24,941	4		
Imazalil ⁽¹⁾	201	0.03		
Spearmint oil	23,280	3		

(1) This formulation is not approved as a plant protection product for stored ware potatoes. Refer to Pesticide usage – Ware potatoes section for details.

Figure 6 Ware potato storage by type – 2022

Appendix 1 – Estimated application tables

Table 1 Potatoes stored, and proportion treated, by storage type – 2022

	Store type			Total
	Unventilated	Ventilated	Refrigerated	lotai
Seed				
Tonnes stored	0	73,952	258,793	332,745
Percentage type	[z]	22	78	
Basic tonnes treated	0	39,094	44,182	83,276
Percentage treated	[z]	53	17	25
Ware				
Tonnes stored	1,087	108,071	509,291	618,449
Percentage type	0.2	17	82	
Basic tonnes treated	0	14,683	35,619	50,302
Percentage treated	[z]	14	7	8
All stored potatoes				
Tonnes stored	1,087	182,023	768,084	951,194
Percentage type	0.1	19	81	
Basic tonnes treated	0	53,777	79,801	133,578
Percentage treated	[z]	30	10	14

Note: some shorthand is used in this table: [z] = not applicable.

Table 2 Potato storage treatment formulations by storage type – 2022

	Store type		Total tonnes	Percentage	
	Unventilated	Ventilated	Refrigerated	treated	treated
Seed					
Imazalil	0	39,094	44,182	83,276	25
Basic tonnes treated(2)	0	39,094	44,182	83,276	25
Ware					
1,4-dimethylnaphthalene	0	10,024	0	10,024	1
Ethylene	0	0	24,941	24,941	4
lmazalil ⁽¹⁾	0	201	0	201	0.03
Spearmint oil	0	12,603	10,677	23,280	3
Basic tonnes treated ⁽²⁾	0	14,683	35,619	50,302	8

⁽¹⁾ This formulation is not approved on ware potatoes. It was applied to seed crops, a proportion of which was later reclassified as ware.

⁽²⁾ This represents the total tonnage treated, not the column sum, as more than one formulation may be applied to potatoes in store.

Table 3 Potato storage treatment active substances – 2022

	Tonnes treated	kg
Seed		
Imazalil	83,276	1,196
Ware		
1,4-Dimethylnaphthalene	10,024	200
Ethylene	24,941	[z] ⁽¹⁾
Imazalil ⁽²⁾	201	2
Spearmint oil	23,281	1,655

Note: some shorthand is used in this table: [z] = not applicable.

- (1) The mass of ethylene used cannot be estimated (refer to Appendix 3 definitions and notes).
- (2) This active substance is not approved as a plant protection product for stored ware potatoes. Refer to Pesticide usage Ware potatoes section.

Table 4 Potato cultivation and storage, comparison with previous surveys – 2022

	Crop	2018	2020	2022
Aroa grown (ba)(1)	Seed	12,092	12,003	11,894
Area grown (ha) ⁽¹⁾	Ware	15,268	16,294	15,248
Tonnes stored ⁽²⁾	Seed	312,793	391,208	332,745
1 Offices Stored	Ware	562,894	596,407	618,449

- (1) This is the census area of the crops intended to be grown for seed and ware production. Some of the seed crop was reclassified as ware post-harvest. As there was no June Agricultural Census in 2022 the SAF area has been used.
- (2) Please note, there has been a significant change in survey methodology which must be taken into account when comparing data from 2022 and previous surveys, see Appendix 4 for further information.

Table 5 Percentage of stored potatoes treated, comparison with previous surveys – 2022

	Crop	2018	2020	2022
Total tonnage treated (%)	Seed	28	39	25
	Ware	13	6	8

Appendix 2 – Survey statistics

Census and sample information

 Table 6
 Distribution of sampled potato stores - 2022

Number of potato growers sampled in each region

Region		Number of stores
North:	Highlands & Islands, Caithness & Orkney, Moray Firth and Aberdeen	11
Angus		36
Central:	East Fife, Central Lowlands and Lothian	18
South:	Tweed Valley, Southern Uplands and Solway	8
Scotland		73

Table 7 Distribution of stored potatoes in sample - 2022

Quantity (tonnes) of potatoes sampled in each region

Crop	North	Angus	Central	South	Scotland
Seed potatoes	17,980	73,675	14,026	7,608	113,289
Ware potatoes	16,008	112,996	58,645	43,681	231,330
Total	33,988	186,671	72,671	51,289	344,619

Table 8 Distribution of sample areas – 2022

Areas (ha) of potatoes sampled in each region

Crop	North	Angus	Central	South	Scotland
Seed potatoes	524	2,530	424	261	3,738
Ware potatoes	384	1,639	1,153	820	3,996
Total	908	4,169	1,577	1,081	7,735

Table 9 Distribution of SAF areas – 2022

Areas (ha) of potato crops grown in Scotland

Crop	North	Angus	Central	South	Scotland
Seed potatoes	4,465	5,258	1,635	536	11,894
Ware potatoes	1,361	7,142	5,084	1,661	15,248
Total	5,826	12,400	6,719	2,197	27,142

Table 10 Raising factors – 2022

Region	Seed	Ware
North	8.5186	3.5461
Angus	2.0781	4.3572
Central	3.8602	4.4092
South	2.0566	2.0251

Table 11 First adjustment factors for ware potatoes – 2022

Region	Ware
North	1.1439
Angus	0.9289
Central	0.9980
South	1.0001

Table 12 Second adjustment factors – 2022

Crop	Adjustment factor
Seed potatoes	0.8848
Ware potatoes	0.7118

Financial burden to farmers

To minimise the burden on farmers, the survey team used non-visit methods of collection such as email, post, or telephone call.

To determine the total burden that the 2022 Potato Storage survey placed on those providing the information, the surveyors recorded the time that 73 respondents spent providing the data during the surveys. This sample represents 97 per cent of growers surveyed. The median time taken to provide the information was 10 minutes.

The following formula was used to estimate the total cost of participating: Burden (£) = No. surveyed x median time taken (hours) x typical hourly rate* (* using median "Full Time Gross" hourly pay for Scotland of £16.69)⁽⁹⁾ The total financial burden to all growers resulting from participation in the 2022 Potato Storage survey was calculated to be £203.06.

Appendix 3 - Definitions and notes

- 1) Pesticide information recorded in this survey relates to **any pesticide usage during potato storage** and to **post-harvest applications**, carried out in the field at lifting, prior to entry to the store. Pre-planting treatments with a fungicide intended to control disease post-planting e.g. black scurf, are not included, even if the fungicide had been applied in store. Use of pesticides in this situation is recorded in the seed treatment section of the preceding arable crop report.
- 2) 'Pesticide' is used throughout this report to include commercial formulations containing active substances (a.s.) used as herbicides, fungicides, insecticides, molluscicides, biological control agents, growth regulators, seed treatments and physical control. A pesticide product consists of one or more active substances co-formulated with other materials. In this survey, only fungicides and sprout suppressants (growth regulators) were encountered.
- 3) An **active substance** is any substance or micro-organism which has a general or specific action against harmful organisms or on plants, parts of plants or plant products.
- 4) In this report the term '**formulation**(s)' is used to describe the pesticide active substance or mixture of active substances in a product(s). It does not refer to any of the solvents, pH modifiers or adjuvants also contained within a product that contribute to its efficacy.
- 5) A **fungicide** is a pesticide used to control fungal diseases in plants or potato tubers.
- 6) A **growth regulator** is a pesticide used to regulate the growth of the plant, for example to suppress the growth of sprouts by potato tubers in store.
- 7) A **seed treatment** is a pesticide applied to seed or potato tuber before planting to protect that plant against disease and pests from the earliest stage of development.
- 8) **Basic tonnage** is the quantity of potatoes treated with a pesticide, irrespective of the number of times they were treated or the number of pesticides used. This figure is used to calculate the percentage of potatoes treated with a given pesticide or pesticide group.
- 9) **Tonnage treated** is the basic tonnage of potatoes treated with a pesticide multiplied by the number of treatments applied to those potatoes. For example, if ten tonnes of potatoes are treated with a pesticide twice, the basic tonnage is five tonnes, and the tonnage treated is twenty tonnes.
- 10) **Seed potatoes** are crops grown for marketing or planting as seed for next season's crop. A fraction of the crop intended for seed production may not meet the necessary requirements and may be reclassified as ware potatoes post-harvest.

- 11) **Ware potatoes** are those grown for the ware (consumption) market, including those processed by a manufacturer. Ware potatoes may include a proportion of potatoes originally planned for seed production but later classified as ware.
- 12) **Unventilated stores** are defined as simple stores without fans that are naturally ventilated.
- 13) **Ventilated stores** can either be **adapted ambient** or **purpose built ambient ventilated stores**. These stores use forced air ventilation; they are not refrigerated.
- 14) **Adapted ambient ventilated stores** are basic stores with forced air ventilation. These stores commonly contain temporary fans and raised vents (normally wire hoops) on the floor of the store.
- 15) **Purpose built ambient ventilated stores** are purpose-built stores with forced air ventilation including open walled letterbox systems or suction wall systems. The potatoes are often stored to a depth of 3-5 metres; the floor is concrete and contains ventilation ducts. Pesticides can be applied by means of fogs and gases dispersed through the ventilation system.
- 16) **Refrigerated Stores** are purpose-built stores which may also have mechanically assisted ventilation. Potatoes are stored at low temperatures which can help reduce the use of pesticides. Pesticides can be applied through the ventilation system.
- 17) Potatoes can be stored either in **bulk** (loose potatoes) or in **wooden boxes**. Potatoes stored in bags are excluded from this survey.
- 18) **Ethanol** is used as an **ethylene** generator to suppress tuber sprouting in stores. There is no standard recommended rate per tonne for the use of ethanol in potato stores and the quantity used varies according to store capacity, crop volume, type of store and duration of storage. In most cases the actual rate of application is not available and total quantity cannot be estimated. Therefore, estimated use of this pesticide is presented only as tonnes of potatoes treated.
- 19) In this report each estimated use of each pesticide is reported in three formats; tonnes treated with pesticide formulations (mixture of active substances in a product) and of individual active substances and quantities of active substance applied (Table 2 formulation data, Table 3 for active substance treated tonnes and quantity data). All three different formats are provided to satisfy the needs of all data users and allow them to assess pesticide use trends. Some users may be interested in use of pesticide products which contain a number of active substances, thus formulation data would be required. Other users are interested in particular active substances which may be formulated on their own or in combination with other active substances. Therefore, active substance data would be required. In addition, both quantity and tonnes treated with pesticides are important indicators of

changes in use over time. Only single active substance formulations were encountered in 2022.

- 20) The **June Agricultural Census**⁽⁹⁾ is conducted annually by the Scottish Government's Rural and Environmental Science Analytical Services (RESAS). The June Agricultural Census collects data on land use, crop areas, livestock and the number of people working on agricultural holdings. For previous reports the June Agricultural Census was used to draw a sample of growers growing the relevant crops to participate in the survey. As there was no census conducted in 2022 (see changes from previous years section), for this report, the 2022 Single Application Form (SAF) data was used to draw a sample of farmers growing the relevant crops to participate in the survey.
- 21) Where quoted in the text or within figures, reasons for application are the grower's stated reasons for use of that particular pesticide on that crop and may not always seem appropriate. It should be noted that growers do not always provide reasons; therefore, those presented in the figures only reflect those specified and may not reflect overall reasons for use.
- 22) Due to rounding, there may be slight differences in totals both within and between tables.
- 23) Data from the 2020⁽³⁾ and 2018⁽⁴⁾ surveys are provided for comparison purposes in some of the tables and figures. It should be noted that there may be changes in areas of seed and ware potatoes grown between survey years. Also, when comparisons are made between surveys it is important to take into account that there may be changes in quantity of potatoes stored.
- 24) For notes on quality and sources of bias please refer to the notes and definitions section of the preceding arable report.

Appendix 4 – Survey methodology

Sampling and data collection

Using the May 2022 Single Application Form (SAF) data, a sample was drawn representing arable cultivation in Scotland. The country was divided into 11 land-use regions (Figure 7). Each sample was stratified by these land-use regions and according to holding size. The holding size groups were based on the total area of arable crops grown. The sampling fractions used within both regions and size groups were based on the areas of relevant crops grown rather than number of holdings, so that smaller holdings would not dominate the sample.

Data relating to pesticide use in potato stores were collected from all potato growers encountered in the arable sample, either during an on-farm or telephone interview, or via e-mail. In instances where the potato land was let, and storage was on a separate holding, the potato grower was contacted individually to obtain storage details. Data were collected for all potatoes stored by these growers, not just for those crops grown on the holdings sampled. Therefore, the sample of stored potatoes relates to a greater area of potato cultivation than that for which field pesticide treatments were collected in the 2022 arable pesticide survey report. In total, data were collected from 73 growers. The crops grown by these growers represent 28 per cent of the total 2022 potato crop SAF area.

The data collected included the areas of seed and ware crops grown, quantities of potatoes sold and stored, storage type, storage method and post-harvest pesticide applications at crop lifting and during storage. Fungicidal seed treatments applied prior to planting are included in the arable crop report.

Raising factors

National pesticide use was estimated by ratio raising. This is a standard statistical technique for producing estimates from a sample. It is the same methodology used by the other UK survey teams and has been used for all historical datasets produced by the Pesticide Survey Unit, allowing comparability over time. The sample data were multiplied by raising factors (Table 10). These factors were calculated by comparing the sample area to the areas recorded in the May 2022 SAF data within each region and size group (please see changes from previous years section for further detail). An adjustment (Table 11) was made to the ware fraction to correct for the potatoes grown as seed that were then designated as ware. A second adjustment (Table 12) was made to align the survey estimates of total tonnes stored with the estimated tonnage of Scottish potato stocks held in store at the end of November provided by SASA Potato section. This represents a change in methodology from previous surveys (see next section).

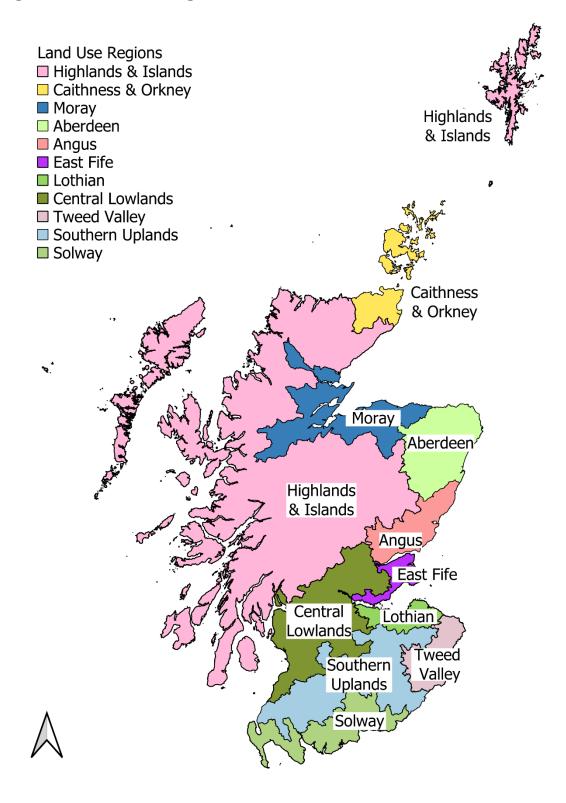
Due to the low numbers of potatoes grown and sampled in some geographic regions, stored data were amalgamated into four regions to allow more robust estimation of pesticide use: the North (Highlands & Islands, Caithness & Orkney, Moray Firth and Aberdeen), Angus (the main potato growing area in

Scotland), Central (East Fife, Lothian, and Central Lowlands) and the South (Tweed Valley, Southern Uplands, and Solway).

Changes from previous years

There are a number of changes which should be noted when comparing the 2022 data with the previous survey.

For previous reports, the June Agricultural Census was used to draw a sample of farmers growing the relevant crops to participate in the survey. National pesticide use was then estimated by ratio raising, by comparing the sample area to the areas recorded in the June Agricultural Census data.


To allow for the Agricultural Statistics Transformation Programme⁽¹¹⁾, the June 2022 Agricultural Census was paused. This pause was agreed with the Office for Statistical Regulation and data users.

For this report, the May 2022 Single Application Form (SAF) data was used to draw the sample and estimate national pesticide use using the same methodology as previous surveys. SAF data accounts for the majority of land area for arable crops. The sample drawn is based on area of crop grown, rather than number of holdings. As such, no attempt is made to account for holdings that are not captured by SAF returns.

There has been a further significant change in the raising process. During the statistical estimation of national pesticide use on stored crops from the sample surveyed (see raising factor section), an adjustment is made to align the survey estimates of total tonnes stored with production estimates previously provided by AHDB Potatoes. All market intelligence work by AHDB potatoes ceased from July 2021, therefore this data was no longer available. Instead, in 2022, production and storage figures were obtained using data provided by the SASA potato department and the Seed Potato Classification Scheme. It was estimated that 80 per cent of the seed and ware potatoes produced in Scotland were still in storage at the end of November 2022.

There was also a significant change in the statistical estimation of national pesticide use on stored crops from the sample surveyed between 2018 and 2020. Please refer to the 2020 report for a full explanation. The 2020 report published a correction to the 2018 storage methods using the new method. The 2020 and updated 2018 figures from the 2020 report have been included in this report for comparison purposes.

Figure 7 Land use regions of Scotland⁽¹⁰⁾

Acknowledgements

Thanks are due to all the growers who provided the information for this report. Thanks, are also due to John Ellicott (SASA) for information on Scottish potato production, and to Gillian Reay and Jackie Hughes (SASA), Fiona Burnett (SRUC), Sara Cook (ADAS) and Ingrid den Hoed (CRD) for editorial assistance. In addition, the authors are grateful for the support from Lewis Ridley and colleagues at Fera Science Ltd, Paul Gavin at the Scottish Government's Agricultural Census Analysis Team and to Adrian Roberts of Biomathematics & Statistics Scotland for support.

References

- Food and Environment Protection Act 1985: http://www.legislation.gov.uk/ukpga/1985/48 [Accessed 05 Oct 20223]
- 2. EU Statistics Regulation (1185/2009/EC)

 Regulation (EC) No 1185/2009 of the European Parliament and of the

 Council of 25 November 2009 concerning statistics on pesticides (Text
 with EEA relevance) (legislation.gov.uk) [Accessed 05 Oct 2023]
- Reay,G, Davis, C, Monie, C. & Wardlaw, J. (2021) Pesticide usage in Scotland: Potato stores 2020. Scottish Government https://www.sasa.gov.uk/document-library/arable-crops-and-potato-stores-2020 [Accessed 06 Oct 2023]
- 4. Reay, G, Davis, C. Monie, C. & Wardlaw, G (2019) Pesticide usage in Scotland: Potato stores 2018. Scottish Government https://www.sasa.gov.uk/document-library/arable-crops-and-potato-stores-2018 [Accessed 06 Oct 2023]
- SRUC Crop Health Monitoring. Third Quarter Report, 1 October 2022
 31 December 2022
- 6. SRUC Technical Note (2010) TN630 Potato Storage Diseases tn630-potato-storage.pdf (sruc.ac.uk) [Accessed 06 Oct 2023]
- Control of Pesticides Regulations 1986: http://www.legislation.gov.uk/uksi/1986/1510/contents/made [Accessed 06 Oct 2023]
- 8. Annual Survey of Hours and Earnings (ASHE) 2022 (Table 3.5a) https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/regionbyoccupation2digitsocashetable3 [Accessed 06 Oct 2023]

- 9. Agricultural Statistics, Scotland 2021. HMSO, Edinburgh 2021.
- 10. Wood, H.J. An Agricultural Atlas of Scotland. George Gill and Sons, London, 1931.
- 11. Agricultural Statistics Transformation Programme https://blogs.gov.scot/statistics/2021/10/29/agricultural-statistics-transformation-programme-begins/ [Accessed 09 Oct 2023]

Tell us what you think

We are always interested to hear from our users about how our statistics are used, and how they can be improved.

Feedback survey

We'd appreciate it if you would complete our short <u>feedback survey</u> on this publication.

Enquiries

For enquiries about this publication please contact:

Pesticide Survey Unit SASA

E-mail: psu@sasa.gov.scot Telephone: 0131 244 6364

For general enquiries about Scottish Government statistics please contact:

Office of the Chief Statistician

e-mail: statistics.enquiries@gov.scot

Join our mailing list

If you would like to receive notification about statistical publications, or find out about consultations on our statistics please join the ScotStat mailing list.

Future publications

Details of future publications can be found on our <u>forthcoming publications</u> page.

ISBN 978-1-83521-719-1 (Web only)

© Crown copyright 2023

This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit **nationalarchives.gov.uk/doc/open-government-licence/version/3** or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: **psi@nationalarchives.gsi.gov.uk**.

Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

This publication is available at www.gov.scot

Any enquiries regarding this publication should be sent to us at

The Scottish Government St Andrew's House Edinburgh EH1 3DG

ISBN: 978-1-83521-719-1 (web only)

Published by The Scottish Government, December 2023

Produced for The Scottish Government by APS Group Scotland, 21 Tennant Street, Edinburgh EH6 5NA PPDAS1391474 (12/23)

www.gov.scot