Contents

Executive summary ...1
Introduction ..2
 Structure of report and how to use these statistics ..3
General trends ..3
 Crop area – grassland and rough grazing ...3
 Crop area – fodder crops ...5
 Pesticide usage – grassland and rough grazing ...7
 Pesticide usage – fodder crops ...12
 General trends in active substances encountered – grass and fodder crops
 Integrated pest management ..18
2017 Pesticide usage ...19
 Direct sown grass ..19
 Undersown grass ...21
 Grass one to four years old ..23
 Grass over five years old ...24
 Rough grazing ...25
 Arable silage ...26
 Fodder beet ...28
 Fodder rape ...30
 Kale and cabbage ..32
 Maize ...34
 Stubble turnips ..35
 Turnips and swedes ...36
 Other fodder crops ..38
Appendix 1 – Estimated application tables ..40
Appendix 2 – Survey statistics ..65
 Census and sample information ..65
 Response rates ..73
 Financial burden to farmers ...74
Appendix 3 - Definitions and notes ..75
Appendix 4 – Survey methodology ..78
 Sampling and data collection ...78
 Raising factors ..79
 Changes from previous years ..79
Data quality assurance ... 80
Main sources of bias .. 80
Appendix 5 – Standard errors ... 82
Appendix 6 – Integrated pest management 84
Acknowledgements ... 94
References .. 94

List of figures and tables

Figure 1 Area of grassland and rough grazing in Scotland 2009–2017 4
Figure 2 Grassland and rough grazing areas in Scotland 2017 4
Figure 3 Regional distribution of grassland and rough grazing in Scotland 2017 ... 5
Figure 4 Area of fodder crops in Scotland 2009–2017 6
Figure 5 Fodder crop areas Scotland 2017 ... 6
Figure 6 Regional distribution of fodder crops in Scotland 2017 7
Figure 7 Area of grassland and rough grazing treated with the major pesticide groups in Scotland in 2009–2017 8
Figure 8 Weight of major pesticide groups applied to grass crops in Scotland 2009–2017 ... 8
Figure 9 Number of pesticide treated hectares per hectare of grass crop grown – 2017 ... 9
Figure 10 Weight of pesticides applied per hectare of grass crop grown – 2017 .. 9
Figure 11 Use of pesticides on grassland and rough grazing (percentage of total area treated with formulations) – 2017 10
Figure 12 Use of pesticides on grassland and rough grazing (percentage of total weight of pesticides applied) – 2017 10
Figure 13 Area of fodder crops treated with the major pesticide groups in Scotland in 2009–2017 ... 11
Figure 14 Weight of major pesticide groups applied to fodder crops in Scotland 2009–2017 ... 13
Figure 15 Number of pesticide treated hectares per hectare of fodder crop grown – 2017 ... 14
Figure 16 Weight of pesticides applied per hectare of fodder crop grown – 2017 .. 14
Figure 17 Use of pesticides on fodder crops (percentage of total area treated with formulations) – 2017 ... 15
Figure 18 Use of pesticides on fodder crops (percentage of total weight applied) – 2017 ... 15
Figure 19 Timing of herbicide applications on direct sown grass – 2017 ... 20
Figure 20 Use of pesticides on undersown grass – 2017 22
Figure 21 Timing of pesticide applications on undersown grass – 2017 22
Figure 22 Timing of herbicide applications on grass one to four years old – 2017 ... 23
Figure 23 Timing of herbicide applications on grass over five years old – 2017 .. 24
Figure 24 Timing of herbicide applications on rough grazing – 2017 25
Table 1 Percentage of each crop treated with pesticides and mean number of spray applications – 2017 40
Table 2 Grassland seed treatment formulations – 2017 42
Table 3 Grassland insecticide formulations – 2017 42
Table 4 Grassland fungicide formulations – 2017 43
Table 5 Grassland herbicide and growth regulator formulations – 2017 45
Table 6 Fodder crop seed treatment formulations – 2017 48
Table 7 Fodder crop insecticide and molluscide formulations – 2017 50
Table 8 Fodder crop fungicide formulations – 2017 51
Table 9 Fodder crop herbicide formulations – 2017 52
Table 10 Compounds encountered in the grassland and fodder survey for the first time in 2017 55
Table 11 Mode of action/chemical group of insecticide active substances on all grass and fodder crops – 2017 56
Table 12 Mode of action/chemical group of fungicide active substances on all grass and fodder crops – 2017 57
Table 13 Mode of action/chemical group of herbicide active substances on all grass and fodder crops – 2017 59
Table 14 Principal active substances by area treated 62
Table 15 Principal active substances by weight 62
Table 16 Grassland and rough grazing, comparison with previous years 63
Table 17 Fodder crops, comparison with previous years 64
Table 18 Regional distribution of grassland and rough grazing crop areas in 2017 65
Table 19 Regional distribution of fodder crop areas in 2017 66
Table 20 Distribution of grassland sample – 201767
Table 21 Distribution of fodder sample – 201767
Table 22 Sampled area of grassland – 201768
Table 23 Census area of grassland – 2017 ...68
Table 24 Sampled area of fodder crops – 201769
Table 25 Census area of fodder crops – 201770
Table 26 Raising factors for grassland – 201770
Table 27 Raising factors for fodder crops – 201771
Table 28 First and second adjustment factors – 201772
Table 29 Response rate – Grassland postal survey73
Table 30 Response rate – Fodder ...73
Table 31 Relative standard errors ...83
Table 32 Summary of responses to IPM risk management questions86
Table 33 Summary of responses to IPM pest monitoring questions90
Table 34 Summary of responses to IPM pest control questions91
Executive summary

This report presents information from a survey of pesticide use on grassland and fodder crops in Scotland in 2017. The crops surveyed included direct sown grass, undersown grass, grass one to four years old, grass over five years old, rough grazing, arable silage, fodder beet, fodder rape, kale and cabbage, maize, stubble turnips, turnips and swedes and other fodder crops.

The estimated area of grassland and rough grazing grown in Scotland in 2017 was approximately 4,364,000 hectares, similar to that grown in 2013. Rough grazing accounted for 70 per cent of the total area grown, grass over five years 25 per cent and grass under 5 years, five per cent.

The fodder crop area was approximately 16,300 hectares, a 16 per cent decrease from the previous survey in 2013. Other stock-feeding crops accounted for 42 per cent of fodder crops grown, of which 85 per cent was arable silage. Turnips and swedes accounted for 23 per cent, fodder rape 12 per cent, kale and cabbage 12 per cent, maize five per cent, fodder beet four per cent and stubble turnips two per cent.

Data were collected from 183 holdings with both fodder crops and grassland, and an additional 511 holdings with grassland only. This sample represented 14 per cent of total fodder crops grown in Scotland, seven per cent of grassland area and three per cent of rough grazing. Ratio raising was used to produce estimates of national pesticide use from the sampled data.

The estimated total area of grassland and rough grazing treated with a pesticide formulation was ca. 87,900 ha (± nine per cent Relative Standard Error, RSE), with a combined weight of 84 tonnes (± ten per cent RSE). Overall these pesticides, almost exclusively herbicides, were applied to four per cent of grassland and less than 0.5 per cent of the rough grazing area. There was little difference in the total area treated, or weight of pesticide applied, to grassland and rough grazing from the previous survey in 2013, but there was a substantial reduction compared to 2009 (ca. one third). The area treated with insecticides, fungicides, seed treatments and growth regulators decreased (99, 41, 37 and 15 per cent respectively), whilst the area treated with herbicides increased (20 per cent).

The estimated total area of fodder crops treated with a pesticide formulation was ca. 24,200 ha (± eight per cent RSE), with a combined weight of eight tonnes (± 15 per cent RSE). Pesticides, primarily herbicides, were applied to 63 per cent of fodder crops. There was 31 per cent decrease in total area treated and a 34 per cent decrease in total weight applied from 2013 to 2017. The application of fungicides, insecticides, herbicides and seed treatments decreased (82, 40, 25 and 14 per cent respectively), whilst the application of molluscicides increased (33 per cent).

Data collected from farmers about their Integrated Pest Management (IPM) activities showed that farmers were using a variety of IPM methods in relation to risk management and the monitoring and control of insect pests, weeds and diseases.
Introduction

The Scottish Government (SG) is required by legislation\(^{(1)(2)}\) to carry out post-approval surveillance of pesticide use. This is conducted by the Pesticide Survey Unit at Science and Advice for Scottish Agriculture (SASA), a division of the Scottish Government’s Agriculture and Rural Economy.

This survey is part of a series of annual reports which are produced to detail pesticide usage in Scotland for arable, vegetable, soft fruit and protected edible crops on a biennial basis and for fodder and forage crops every four years. The Scottish survey data are incorporated with England, Wales and Northern Ireland data to provide estimates of annual UK-wide pesticide use. Information on all aspects of pesticide usage in the United Kingdom as a whole may be obtained from the Pesticide Usage Survey Team at Fera Science Ltd, Sand Hutton, York. Also available at:

https://secure.fera.defra.gov.uk/pusstats/surveys/index.cfm

The Scottish Pesticide Usage reports have been designated as Official Statistics since August 2012 and as National Statistics since October 2014. The Chief Statistician (Roger Halliday) acts as the statistics Head of Profession for the Scottish Government and has overall responsibility for the quality, format, content and timing of all Scottish Government national statistics publications, including the pesticide usage reports. As well as working closely with Scottish Government statisticians, SASA receive survey specific statistical support from Biomathematics and Statistics Scotland (BioSS).

All reports are produced according to a published timetable. For further information in relation to Pesticide Survey Unit publications and their compliance with the code of practice please refer to the pesticide usage survey section of the SASA website. The website also contains other useful documentation such as confidentiality and revision policies, user feedback and detailed background information on survey methodology and data uses.

Additional information regarding pesticide use can be supplied by the Pesticide Survey unit. Please email psu@sasa.gsi.gov.uk or visit the survey unit webpage:

http://www.sasa.gov.uk/pesticides/pesticide-usage
Structure of report and how to use these statistics

This report is intended to provide data in a useful format to a wide variety of data users. The general trends section provides commentary on recent changes in survey data and longer term trends. The 2017 pesticide usage section summarises usage on all grassland and fodder crops in 2017. Appendix 1 presents all estimated pesticide usage in three formats, area and weight of formulations by crop and area and weight of active substances grouped by their mode of action. The area and weight of active substances by crop data, which were previously published in this report are now published as supplementary data in Excel format. These different measures are provided to satisfy the needs of different data users (see Appendix 3 for examples). Appendix 2 summarises survey statistics including census and holding information, raising factors and survey response rates. Appendix 3 defines many of the terms used throughout the report. Appendix 4 describes the methods used during sampling, data collection and analysis as well as measures undertaken to avoid bias and reduce uncertainty. Any changes in method from previous survey years are also explained.

It is important to note that the figures presented in this report are produced from surveying a sample of holdings rather than a census of all the holdings in Scotland. Therefore the figures are estimates of the total pesticide use for Scotland and should not be interpreted as exact. To give an idea of the precision of estimates, the report includes relative standard errors. A full explanation of standard errors can be found in Appendix 5. Appendix 6 outlines the results of an additional survey which was conducted to collect details of the growers’ Integrated Pest Management (IPM) activities i.e. risk management, pest monitoring and non-chemical methods of control.

General trends

Crop area – grassland and rough grazing

The estimated area of grassland and rough grazing in 2017 was 4,363,985 hectares (Table 16). This is very similar to the area recorded in 2013 and a six per cent decrease from 2009. Since the last survey, the area of rough grazing has remained almost the same, grass over five years old has increased by 26 per cent and grass under five years old and undersown grass have decreased by 53 per cent and 51 per cent respectively (Figure 1). However, it should be noted that these changes in reported crop areas, and the subsequent estimates of pesticide use made using these census areas, may have been influenced by changes in the census definitions of temporary and permanent grass implemented since the last survey rather than wholly reflecting changes in land use (refer to Appendix 4).

In 2017, rough grazing accounted for 70 per cent of Scottish grassland area, grass over five years old 25 per cent and grass under 5 years old five per cent. Undersown grass accounted for less than 0.5 per cent of the crop area.
Over half of all grassland and rough grazing in Scotland is in the Highlands and Islands region (Figure 3).

Figure 1 Area of grassland and rough grazing in Scotland 2009-2017

![Bar chart showing area of grassland and rough grazing in Scotland 2009-2017](chart_1)

Note: Undersown grass has been excluded as the area grown is <30,000 hectares. There was a change in census definition of temporary and permanent grass between 2013 and 2017. Therefore reported crop changes may not wholly reflect changes in land use (Appendix 4)

Figure 2 Grassland and rough grazing census areas in Scotland 2017 (percentage of total area)

![Pie chart showing percentage of grassland and rough grazing areas](chart_2)

Scottish grassland & rough grazing area ca. 4,364,000 ha
Crop area – fodder crops

The estimated area of fodder crops grown in 2017 was 16,304 hectares (Table 17). This represents a 16 per cent decrease from 2013 and a 29 per cent decrease from 2009. Since the previous survey, the areas of maize, other stock-feeding crops, turnips & swedes and fodder rape have decreased in area (44, 25, 7, 5 per cent respectively). In contrast, areas of fodder beet and kale & cabbage have increased (32 and six per cent respectively, Figure 4).

In 2017, almost half of the fodder crops were found in the ‘other stock-feeding’ category of the census (Figure 5). Within this category, 85 per cent of the crops were arable silage. Turnips & swedes, fodder rape and kale & cabbage were also widely grown (23, 12 and 12 per cent of the total fodder crop area respectively). Fodder crops are fairly evenly distributed within Scotland, with the largest proportion, 21 per cent, grown in the Aberdeen region (Figure 6).
Figure 4 Area of fodder crops in Scotland 2009-2017

Note: ‘other stock-feeding crops’ include arable silage, red clover, swedes, kale, stubble turnips and fodder crop mixes

Figure 5 Fodder crop census areas Scotland 2017 (percentage of total area)

Note: ‘other stock-feeding crops’ include arable silage, red clover, swedes, kale, stubble turnips and fodder crop mixes
Figure 6 Regional distribution of fodder crops in Scotland 2017 (percentage of total area)

Note: H&I = Highlands and Islands, C&O = Caithness and Orkney, S. Uplands = Southern Uplands, Other = Lothian and East Fife

Pesticide usage – grassland and rough grazing

As in previous surveys, the proportion of grassland and rough grazing treated with a pesticide was very low. Only four per cent of grassland and less than 0.5 per cent of rough grazing was treated with a pesticide and these areas received, on average, a single spray during 2017 (Table 1).

It is estimated that the area of grassland and rough grazing treated with a pesticide formulation in 2017 was ca. 87,900 hectares (Table 16 & Figure 7). This represents an increase of one per cent since 2013 but a decrease of 38 per cent from 2009. A similar pattern is shown in relation to the weight of pesticide applied; 84 tonnes was applied in 2017, a decrease of two per cent from 2013 and a decrease of 33 per cent from 2009 (Figure 8).
In order to make accurate comparisons between surveys, temporal differences in crop area must be taken into account. Therefore, the number of pesticide treated hectares and total weight of pesticide used per hectare of crop grown have been calculated. Once pesticide use has been adjusted for crop area, there is little difference in pesticide treated area or weight on grassland and rough grazing between 2013 and 2017 (Figures 9 and 10).
However, there is a substantial reduction in pesticide use in comparison to 2009 (34 per cent decrease in treated area and 28 per cent decrease in weight).

As noted in the trends in crop area section of the report, the census grass area and, as a result, subsequent estimates of pesticide use, may have been influenced by changes in census definitions of temporary and permanent grass implemented since the last survey rather than wholly reflecting changes in land use (refer to Appendix 4).

Figure 9 Number of pesticide treated hectares (formulations) per hectare of grass crop grown - 2017

Figure 10 Weight of pesticides applied per hectare of grass crop grown – 2017

Note: Seed treatments, growth regulators and molluscicides have been excluded as they represent <0.001 kg per hectare.
Despite overall pesticide use being very similar to that reported in the last survey, there were some differences in the types of pesticides encountered. As in previous surveys, herbicides were the most commonly used pesticides on grassland and rough grazing in 2017, accounting for 90 per cent of the treated area and 98 per cent of total pesticide use by weight (Figures 11 & 12). The majority of herbicide use was on undersown and direct sown grass (60 per cent and 20 per cent of crop area treated respectively). Herbicides were the only type of pesticide applied to one to four year old grass, grass over five years old and rough grazing (Table 1). When changes in crop area are taken into account, there was there was a 20 per cent increase in the area treated with herbicides from 2013 to 2017 (Figure 9) and a five per cent increase in herbicide weight (Figure 10). Mean Scottish winter and spring temperatures in 2017 were 78 and 57 per cent higher respectively than in 2013. These warmer conditions may have increased weed pressure and could have contributed to this increase in reported herbicide use\(^{(5)}\).

Figure 11 Use of pesticides on grassland and rough grazing (percentage of total area treated with formulations) - 2017

![Pie chart showing percentage of total area treated with formulations in 2017]

- Herbicides: 90%
- Fungicides: 8%
- Growth Regulators: 1%
- Insecticides: <0.5%
- Seed treatments: 1%
In 2017, fungicides accounted for eight per cent of the total pesticide treated area and less than two per cent of the total weight applied (Figures 11 & 12). Fungicides were only applied to undersown grass for the control or prevention of disease on the nurse crop. Forty-eight per cent of undersown grass was treated, with an average of 1.3 fungicide applications. When changes in crop area are taken into account, the fungicide treated area decreased by 41 per cent from 2013 to 2017 (Figure 9) and the weight applied decreased by 33 per cent (Figure 10). Again, this may have been influenced by differences in the weather in the two crop seasons. Winter and spring 2017 had 12 and 15 per cent less rainfall respectively than in 2013 as well as fewer rain days. This may have reduced disease pressure and the requirement for fungicide sprays.

Growth regulators accounted for only one per cent of the total pesticide treated area and less than 0.5 per cent of the total weight of pesticides applied (Figures 11 & 12). Growth regulators were only applied to undersown grass, of which eight per cent of the crop area was treated. When changes in crop area are taken into account, there was a 15 per cent decrease in area treated between 2013 and 2017 (Figure 9) and a seven per cent decrease in weight applied (Figure 10).

Seed treatments also accounted for only one per cent of the total pesticide treated area and less than 0.5 per cent of the total weight of pesticides applied. (Figures 11 & 12). Seed treatments were only applied to direct sown grass, of which five per cent of the crop area received a treatment. When changes in crop area are taken into account, there was a 37 per cent decrease in area treated between 2013 and 2017 (Figure 9). However, the weight of seed treatments applied increased by 58 per cent (Figure 10). This reduction in treated area but increased pesticide weight in 2017 is a result of
recording seed treatments applied at different dose rates in the two surveys. In 2013 both *Bacillus subtilis*, a biological seed treatment applied at very low dose rates, and thiram were encountered, in 2017 thiram was the only seed treatment recorded.

There was a substantial decrease in the use of insecticides on grass crops in 2017 (Figures 7 & 8). Insecticides accounted for less than 0.5 per cent of the total pesticide treated area and weight applied (Figures 11 & 12). Insecticide use was only recorded, on one per cent of undersown grass, for insect control on the nurse crop. When changes in crop area are taken into account, treated area decreased by 99 per cent between 2013 and 2017 (Figure 9) and weight of insecticides decreased by >99 per cent (Figure 10). In 2016, the active substance chloropyrifos, which was used as a treatment for leatherjackets on grass in the previous survey, was withdrawn. As there are no alternative pesticides approved for leatherjacket control, insecticide use on grass crops was not encountered in this survey. However, some farmers reported that they used non-chemical methods for control of leatherjackets (see Appendix 6).

No molluscicides or sulphur were applied to grassland or rough grazing crops in 2017. In the 2013 survey, molluscicides accounted for less than one per cent of the total pesticide treated area and use of sulphur was not encountered (last recorded in 2009).

Pesticide usage – fodder crops

In contrast to pesticide use on grassland, an estimated 63 per cent of the total fodder crop was treated with a pesticide (Table 1). The area of fodder crops treated with a pesticide formulation in 2017 was estimated to be ca. 24,300 hectares (Table 17 & Figure 13) and the total weight of pesticide applied ca. eight tonnes (Figure 14). When crop area is taken into account, there was a decrease of 31 per cent in total area treated with pesticide formulations from 2013 to 2017 and a 21 per cent decrease from 2009 to 2017 (Figure 15). In terms of weight of pesticide applied, there was a 34 per cent decrease from 2013 to 2017 and a 38 per cent decrease from 2009 to 2017 (Figure 16).

Maize and fodder beet crops had the highest proportion of area treated, with all crops encountered receiving at least one pesticide treatment (Table 1). Other fodder crops received a range of pesticide input, with 29 to 58 per cent of their crop area treated with pesticide, primarily herbicide. In contrast, no pesticide treatments were recorded on stubble turnips.
Figure 13 Area of fodder crops treated with the major pesticide groups in Scotland in 2009–2017

Note: molluscicides and sulphur have been excluded as they represent less than 500 hectares

Figure 14 Weight of major pesticide groups applied to fodder crops in Scotland 2009-2017

Note: growth regulators and molluscicides have been excluded as they represent <400kg
Figure 15 Number of pesticide treated hectares (formulations) per hectare of fodder crop grown - 2017

Note: molluscicides and sulphur have been excluded as they represent less than 0.02 treated hectares per hectare grown

Figure 16 Weight of pesticides applied per hectare of fodder crop grown - 2017

Note: growth regulators and molluscicides have been excluded as they represent <1,000kg

Herbicides were the most commonly used pesticide, accounting for 46 per cent of the area treated (Figure 17) and 94 per cent of the total weight of pesticides applied (Figure 18). When changes in crop area were taken into account, there was a 25 per cent decrease in area treated with herbicides from 2013 to 2017 (Figure 15) and a 22 per cent decrease in weight (Figure 16). This reduction is in contrast to the increase in herbicide use encountered
in grass crops and may have been influenced by the limited number of post emergence herbicide options currently available for use on fodder brassicas\(^6\). The dry spring may also have reduced the likelihood of secondary weed germination flushes (F. Burnett, SRUC, pers. comm. Aug 2018). In addition, changes in crop specific cultivation methods, such as increased use of plastic film on maize crops at establishment, may also have influenced changes in herbicide use.

Figure 17 Use of pesticides on fodder crops (percentage of total area treated with formulations) - 2017

Figure 18 Use of pesticides on fodder crops (percentage of total weight applied) – 2017
Seed treatments accounted for 46 per cent of the total area treated and three per cent of the total weight of pesticide applied (Figures 17 & 18). When changes in crop area were taken into account, the area treated decreased by 14 per cent from 2013 to 2017 (Figure 15) and weight decreased by 52 per cent (Figure 16). There are no clear reasons for this reduction in seed treatments, influencing factors may be the smaller range of approved seed treatments available in comparison with the last survey and differences in the areas of the types of fodder crops grown.

Fungicide use was low in fodder crops, accounting for four per cent of the total treated area and three per cent of the total weight of pesticides applied (Figures 17 & 18). When changes in crop area are taken into account, there was an 82 per cent decrease in area treated from 2013 to 2017 (Figure 15) and an 84 per cent decrease in weight (Figure 16). As discussed in the grassland pesticide use section, this large decrease in the use of fungicides may have been partly influenced by the weather in the 2017 crop season, which was drier than in 2013 and resulted in reduced disease pressure.

Insecticide use was also low, accounting for four per cent of the total treated area and under 0.5 per cent of the total weight of pesticides applied (Figures 17 & 18). When changes in crop area are taken into account, there was a 40 per cent decrease in area treated between 2013 and 2017 (Figure 15) and a 98 per cent decrease in weight (Figure 16). The withdrawal of chlorpyrifos has limited the options available for the treatment of pests such as cabbage root fly in forage brassicas\(^6\). In addition, pirimicarb lost approval in July 2017, half way through the field season, limiting its use on turnips & swede crops. These organophosphate and carbamate insecticides used in the previous survey are applied at higher dose rates than the pyrethroid insecticides encountered in the current survey.

Molluscicides accounted for less than 0.5 per cent of both pesticide treated area and weight (Figures 17 & 18). When changes in crop area are taken into account, there was a 33 per cent increase in area treated from 2013 to 2017 (Figure 15) and a 23 per cent increase in weight (Figure 16). There was 77 per cent more rainfall in Scotland in the summer of 2017 compared to 2013\(^5\), which led to an increased risk of slug damage in crops\(^7\) and may have influenced molluscicide use patterns.

No growth regulators or sulphur were applied to fodder crops in 2017. In the 2013 survey, molluscicides accounted for less than one per cent of the total pesticide treated area and growth regulators less than two per cent.
General trends in active substances encountered – grass and fodder crops

The majority of pesticides used in grass and fodder crops are herbicides. In terms of area treated, the most commonly used herbicide active substances were fluroxypyr, MCPA and triclopyr (Table 14). These three active substances were also in the top five most commonly used herbicides in the 2013 survey, although comparative use has increased (by 88, 23 and 126 per cent respectively). In relation to weight, the most used herbicides were MCPA, asulam (applied under emergency authorisation to grassland for bracken control) and glyphosate (Table 15). Glyphosate use has decreased since the previous survey (reduction of 11 and 23 per cent in relation to area treated and weight applied respectively).

Other notable changes in herbicide active substance use include: clopyralid (136 per cent increase in area, 151 per cent in weight), chloridazon (141 per cent increase in area, 170 per cent in weight), dicamba (63 per cent decrease in area, 53 per cent in weight), metazachlor (37 per cent decrease in area, 54 per cent in weight) and 2,4-DB (44 per cent decrease in area, 47 per cent in weight).

As in the 2013 survey, the most used foliar fungicide active substance by area was prothioconazole and the most used seed treatment active substance was thiram. The most commonly used insecticide in the 2017 was lambda-cyhalothrin, in 2013 the most commonly used was chlorpyrifos.

The herbicides dimethenamid-P and s-metolachlor and the fungicides bixafen and fluxapyroxad were recorded for the first time in grass and fodder crops in 2017 (Table 10).

For the first time in this series of reports, insecticides, fungicides and herbicides have been classified into groups according to their mode of action (Tables 11-13).
Integrated pest management

For the first time in this series of surveys, additional data collection was conducted in relation to grower adoption of Integrated Pest Management (IPM) measures. This is a summary of the data; please refer to Appendix 6 for the full dataset. Growers were asked a series of questions about the IPM activities that they implemented for their grass and fodder crop production. Unlike the other statistics in this report, the figures relating to IPM are not raised to produce national estimates but represent only the responses of those surveyed.

In total, IPM data was collected from 119 growers, collectively representing eight per cent of the Scottish fodder crop area and 0.4 per cent of the grass area. Of these, 95 per cent did not have an IPM plan, three per cent of farmers completed their own plan and two per cent had a plan completed by their agronomist (Figure 38). Despite the majority of farmers not completing a plan, uptake of a wide range of IPM methods was encountered. Growers were asked about their IPM activities in relation to three categories; risk management, pest monitoring and pest control.

Ninety seven per cent of growers conducted at least one IPM risk management measure (Table 32). The majority of farmers tested their soils in order to tailor inputs to improve crop performance (84 per cent), managed their seed bed production to minimise pest risk (82 per cent) and used crop rotation to manage their risk of pest damage (65 per cent). Around half of growers adopted techniques to protect or enhance populations of beneficial organisms (57 per cent), considered risk management when selecting seeds and varieties (51 per cent) and amended cultivation methods at sowing to increase crop success (48 per cent). Nine per cent sowed cover crops as part of their crop production cycle.

Ninety four per cent of growers conducted at least one IPM pest monitoring activity (Table 33). The majority of growers monitored crop growth stages (81 per cent) and also monitored and identified pests on their crops (93 per cent). Eighteen per cent of growers used action thresholds when monitoring pest populations and 17 per cent used specialist diagnostics when dealing with pests that were more problematic to identify or monitor. The low use of thresholds in this crop sector is influenced by its low pesticide input.

Ninety seven per cent of growers conducted at least one IPM pest control activity (Table 34). Eighty seven per cent of growers used non-chemical control in partnership or instead of chemical control. Fifty one per cent of growers targeted their pesticide applications to reduce pesticide use and 39 per cent followed anti-resistance strategies. Finally, 82 per cent of respondents stated that they regularly monitored the success of their crop protection measures.
2017 Pesticide usage

Direct sown grass

- An estimated 19,587 hectares of direct sown grass was grown in Scotland in 2017, a decrease of 29 per cent since 2013
- 25 per cent of the crop was treated with a pesticide
- Pesticides were applied to 6,321 treated hectares and 4,917 kilograms of pesticide were applied in total (see summary table below)
- 85 per cent of pesticides applied, by area, were herbicides and 15 per cent were seed treatments
- Direct sown grass received on average one herbicide spray applied to 20 per cent of the crop area (Table 1)
- Timings of herbicide applications are shown in Figure 19
- 45 per cent of herbicide use was for grass weed control, 24 per cent for crop destruction/pasture kill, nine per cent for chickweed, seven per cent for docks, six per cent for daynettle and the remaining 11 per cent for control of other weeds including redshank, thistle, fat hen, rushes and broad-leaved weeds

Summary of pesticide use on direct sown grass

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>5,396</td>
<td>4,834</td>
<td>20</td>
<td>Glyphosate (1,517), 2,4-DB (1,132)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>925</td>
<td>83</td>
<td>5</td>
<td>Thiram (925)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>6,321</td>
<td>4,917</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Figure 19 Timing of herbicide applications on direct sown grass - 2017
Undersown grass

- An estimated 7,563 hectares of undersown grass was grown in Scotland in 2017, a decrease of 51 per cent from 2013
- 60 per cent of undersown grass was treated with a pesticide (see Figure 20 for types of pesticides used)
- 16,092 hectares of pesticide formulations were applied and 6,389 kilograms of pesticide were used in total on the crop (see summary table below)
- All fungicide and insecticide use on undersown grass was for controlling disease or insect pests in the nurse crop.
- Undersown grass received on average 1.4 pesticide sprays on 60 per cent of the crop (Table 1). These included 1.3 fungicide applications on 48 per cent of the crop and one herbicide application on 60 per cent of the crop
- The timing of pesticide applications are shown in Figure 21
- Reasons for fungicide applications were supplied for 65 per cent of total use; 47 per cent was for general disease control, eight per cent for mildew, five per cent for Rhynchosporium and five per cent for Ramularia
- Reasons for herbicide applications were supplied for 82 per cent of all use; 52 per cent for general weed control, 10 per cent for annual broad-leaved weeds, six per cent for nettles, five per cent for chickweed, four per cent for thistles, two per cent for annual grass weeds and one per cent for rushes.
- All use of insecticides on undersown grass was for aphid control

Summary of pesticide use on undersown grass

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>8,352</td>
<td>4,482</td>
<td>60</td>
<td>2,4-DB (2,746), Tribenuron-methyl (2,735)</td>
</tr>
<tr>
<td>Fungicides</td>
<td>7,065</td>
<td>1,656</td>
<td>48</td>
<td>Chlorothalonil (1,511), Prothioconazole/trifloxystrobin (1,142)</td>
</tr>
<tr>
<td>Insecticides</td>
<td>69</td>
<td><0.5</td>
<td>1</td>
<td>Lambda-cyhalothrin (69)</td>
</tr>
<tr>
<td>Growth regulators</td>
<td>606</td>
<td>250</td>
<td>8</td>
<td>Chlormequat (258)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>16,092</td>
<td>6,389</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Figure 20 Use of pesticides on undersown grass (percentage of total area treated with formulations) – 2017

- Fungicides: 44%
- Herbicides: 52%
- Insecticides: <0.5%
- Growth Regulators: 4%

Figure 21 Timing of pesticide applications on undersown grass - 2017
Grass one to four years old

- An estimated 186,667 hectares of grass between one and four years old was grown in Scotland in 2017. This represents a decrease of 55 per cent from 2013
- Only herbicides were applied to grass between one and four years old
- Three per cent of the crop was treated with a herbicide (Table 1)
- 5,098 hectares of herbicide formulations were applied and 2,729 kilograms of herbicide were used in total
- Fluroxypyr (1,043 hectares) and fluroxypyr/triclopyr (931 hectares) were the most used herbicide formulations
- The timing of herbicide applications are shown in Figure 22
- Reasons were given for 99 per cent of total herbicide use; 66 per cent for control of docks, 12 per cent for thistles, seven per cent for grass weeds, six per cent for ragwort, four per cent for other weeds (including nettles, daisies and rushes) and three per cent for grass kill

Figure 22 Timing of herbicide applications on grass one to four years old - 2017
Grass over five years old

- 1,112,553 hectares of grass over five years old was grown in Scotland in 2017. This was a 26 per cent increase from 2013.
- Only herbicides were applied to grass over five years old.
- Three per cent of the crop was treated with a herbicide (Table 1).
- Herbicides were applied to 46,050 hectares and 34,217 kilograms of herbicides in total were applied to the crop.
- The most used herbicide formulations were MCPA, applied to 10,489 hectares, fluroxypyr applied to 8,804 hectares and fluroxypyr/triclopyr applied to 8,061 hectares.
- Timings of herbicide applications are shown in Figure 23.
- Reasons were given for 98 per cent of herbicide use; docks accounted for 44 per cent of herbicide applications, thistles 21 per cent, rushes 15 per cent, nettles five per cent, ragwort five per cent, other weeds (including buttercup and general weed control) five per cent and one per cent grass/crop destruction.

Figure 23 Timing of herbicide applications on grass over five years old - 2017
Rough grazing

- 3,037,615 hectares of rough grazing was grown in Scotland in 2017, a one per cent decrease from the 2013 survey
- Only herbicides were applied to rough grazing
- 0.5 per cent of rough grazing was treated with a herbicide, with an average of one application (Table 1)
- An area of 14,378 hectares of herbicide formulations and 35,553 kilograms were applied in total
- The most commonly encountered herbicide formulations were asulam (5,886 hectares) and MCPA (5,762 hectares)
- Timings of the herbicide applications are shown in Figure 24
- Reasons were supplied for all herbicide use on rough grazing; 45 per cent of applications were for bracken, 44 per cent for rushes, six per cent for docks and five per cent for thistles

Figure 24 Timing of herbicide applications on rough grazing - 2017
Arable silage

- An estimated 5,801 hectares of arable silage was grown in Scotland in 2017, a decrease of 32 per cent from 2013
- Arable silage is recorded in the ‘other crops for stock-feeding’ category of the Agricultural Census
- Crops grown for arable silage included spring barley, spring oats, spring wheat, peas, lupin, triticale, rye, clover and vetches, some of which were undersown
- 58 per cent of the crop was treated with a pesticide (see Figure 25 for types of pesticides used)
- 5,928 hectares of pesticide formulations and 1,669 kilograms of pesticides were used in total on arable silage (see summary table below)
- The arable silage crop received on average one application of fungicides and herbicides on 10 per cent and 21 per cent of the crop respectively (Table 1)
- Timings of the pesticide applications are shown in Figure 26
- Reasons were supplied for 62 per cent of applications of fungicides; 51 per cent was for general disease control and 11 per cent for mildew
- Reasons were supplied for 79 per cent of herbicide applications; 75 per cent was for general weed control and four per cent for docks

Summary of pesticide use on arable silage

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>1,948</td>
<td>1,420</td>
<td>21</td>
<td>Tribenuron-methyl (319), Pendi methyl (290)</td>
</tr>
<tr>
<td>Fungicides</td>
<td>806</td>
<td>193</td>
<td>10</td>
<td>Chlorothalonil (220)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>3,174</td>
<td>56</td>
<td>48</td>
<td>Imazalil/ipconazole (759), Fluopyram/ prothioconazole/ tebuconazole (751)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>5,928</td>
<td>1,669</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

26
Figure 25 Use of pesticides on arable silage (percentage of total area treated with formulations) – 2017

Seed treatments 53%

Herbicides 33%

Fungicides 14%

Figure 26 Timing of pesticide applications on arable silage - 2017

Percentage of applications
Fodder beet

- An estimated 611 hectares of fodder beet was grown in Scotland in 2017, a 31 per cent increase from 2013
- All of the crop surveyed was treated with a pesticide (see Figure 27 for types of pesticides applied)
- Pesticides were applied to 3,760 treated hectares and 2,115 kilograms were applied in total (see summary table below)
- The fodder beet crop received on average 3.6 pesticide applications (Table 1). These sprays included 3.2 herbicides and one insecticide application on 100 per cent and 34 per cent of the crop respectively
- The timings of pesticide applications are shown in Figure 28
- Reasons were provided for 91 per cent of herbicide use; 84 per cent was for general weed control, four per cent for crop destruction/ grass kill and three per cent for broad-leaved weeds
- The most common varieties encountered were Robbos, Tarine and Kyros, accounting for 40, 24 and 17 per cent respectively

Summary of pesticide use on fodder beet

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>3,194</td>
<td>2,106</td>
<td>100</td>
<td>Metamitron (919), Desmedipham/ ethofumesate/lenacil/ phenmedipham (878)</td>
</tr>
<tr>
<td>Insecticides</td>
<td>210</td>
<td>1</td>
<td>34</td>
<td>Lambda-cyhalothrin (210)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>356</td>
<td>8</td>
<td>58</td>
<td>Tefluthrin (356)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>3,760</td>
<td>2,115</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Use of pesticides on fodder beet (percentage of total area treated with formulations) – 2017

Timing of pesticide applications on fodder beet - 2017
Fodder rape

- 2,007 hectares of fodder rape were grown in 2017, a five per cent decrease from 2013
- It is estimated that 68 per cent of the fodder rape encountered was mixed with another crop such as kale or stubble turnips
- A further 55 hectares of fodder rape were recorded in fodder crop mixes in the 'other crops for stock-feeding' category (see the other fodder section for details)
- 29 per cent of the crop was treated with a pesticide (see Figure 29 for types of pesticides used)
- 790 hectares of pesticide formulations were applied and 687 kilograms of pesticides were used in total (see summary table below)
- 27 per cent of the fodder rape crop was treated with a herbicide, receiving on average one application (Table 1)
- The timing of pesticide applications are shown in Figure 30
- 53 per cent of herbicide use was for grass/pasture kill and 47 per cent was for general weed control. All insecticide use was for flea beetle
- The most common varieties encountered were Hobson accounting for 18 per cent of the sampled area and Swift, a rape/kale hybrid accounting for 17 per cent

Summary of pesticide use on fodder rape

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>585</td>
<td>663</td>
<td>27</td>
<td>Glyphosate (383)</td>
</tr>
<tr>
<td>Insecticides</td>
<td>36</td>
<td><0.5</td>
<td>2</td>
<td>Cypermethrin (36)</td>
</tr>
<tr>
<td>Molluscicides</td>
<td>107</td>
<td>22</td>
<td>5</td>
<td>Metaldehyde (107)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>63</td>
<td>2</td>
<td>3</td>
<td>Thiram (63)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>790</td>
<td>687</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Figure 29 Use of pesticides on fodder rape (percentage of total area treated with formulations) – 2017

Figure 30 Timing of pesticide applications on fodder rape - 2017
Kale and cabbage

- 1,915 hectares of kale and cabbage were grown in 2017, a six per cent increase from 2013
- 99 per cent of the crop was kale and one per cent was cabbage
- The cabbage crop was grown from transplants
- It is estimated that 45 per cent of the kale and cabbage encountered was mixed with another crop such as fodder rape or turnips
- A further 190 hectares of kale, kale hybrid and kale mixes were recorded in the ‘other crops for stock-feeding’ category (see the other fodder section for details)
- 49 per cent of the crop was treated with a pesticide (see Figure 31 for types of pesticides applied)
- 1,830 hectares of pesticide formulations were applied and 489 kilograms of pesticide used in total (see summary table below)
- The kale and cabbage crop received on average 1.2 herbicide and 1.1 insecticide sprays on 19 and 14 per cent of the crop area respectively (Table 1)
- The timings of pesticide applications are shown in Figure 32
- Reasons were provided for 39 per cent of herbicide use on kale and cabbage; 18 per cent was for grass/pasture kill, 11 per cent for general weed control, seven per cent for annual broad-leaved weeds and three per cent for annual meadow grass. Reasons were supplied for 69 per cent of insecticide use; 56 per cent was for flea beetle and 13 per cent for diamond-back moth
- The most common variety encountered was Maris Kestrel, accounting for 29 per cent of the sample area surveyed

Summary of pesticide use on kale and cabbage

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>503</td>
<td>460</td>
<td>19</td>
<td>Glyphosate (231), Metazachlor (132)</td>
</tr>
<tr>
<td>Insecticides</td>
<td>293</td>
<td>4</td>
<td>14</td>
<td>Deltamethrin (81), Lambda-cyhalothrin (48)</td>
</tr>
<tr>
<td>Molluscicides</td>
<td>33</td>
<td>4</td>
<td>2</td>
<td>Metaldehyde (33)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>1,001</td>
<td>21</td>
<td>35</td>
<td>Thiamethoxam (622), Thiram (379)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>1,830</td>
<td>489</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>
Figure 31 Use of pesticides on kale and cabbage (percentage of total area treated with formulations) – 2017

Figure 32 Timing of pesticide applications on kale and cabbage - 2017
Maize

- An estimated 792 hectares of maize was grown in Scotland in 2017, a 44 per cent decrease since 2013
- All of the maize crop was treated with a pesticide
- 52 per cent of pesticides, by area applied, were seed treatments and 48 per cent were herbicides
- The maize crop received on average 1.1 applications of herbicides (Table 1)
- 2,392 hectares of pesticide formulations were applied and a total of 1,017 kilograms of pesticides were used (see summary table below)
- The timings of pesticide applications are shown in Figure 33
- 89 per cent of herbicide use was for general weed control, eight per cent for grass kill and three per cent for couch grass
- The most common variety encountered was Kaspian, accounting for 62 per cent of the sampled area
- 19 per cent of the sampled area was covered by plastic film at crop establishment

Summary of pesticide use on maize

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>1,149</td>
<td>896</td>
<td>100</td>
<td>Pendimethalin (649), Dimethenamid-P/pendimethalin (240)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>1,243</td>
<td>122</td>
<td>100</td>
<td>Methiocarb (792), Thiram (409)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>2,392</td>
<td>1,017</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Figure 33 Timing of herbicide applications on maize - 2017

Stubble turnips

- An estimated 339 hectares of stubble turnips were grown in Scotland in 2017
- A further 398 hectares of stubble turnips and stubble turnips fodder crop mixes were recorded in the ‘other crops for stock-feeding’ category (see the other fodder section for details)
- Stubble turnips are often a constituent of other fodder mixes and therefore it is likely that the estimated area grown is under-estimated
- No pesticides were applied to the stubble turnips crop
- The most common variety encountered was Tyfon, accounting for 23 per cent of the sampled area
Turnips and swedes

- 3,806 hectares of turnips and swedes were grown in Scotland in 2017, representing a seven per cent decrease from 2013.
- A further 207 hectares of turnips and swedes and turnips and swedes fodder crop mixes were recorded in the ‘other crops for stock-feeding’ category (see the other fodder section for details).
- 92 per cent of the crop was treated with a pesticide (see Figure 34 for types of pesticides applied).
- 8,544 hectares of pesticide formulations were applied and 1,773 kilograms of pesticides were used in total (see summary table below).
- On average turnips and swedes received 1.1 herbicide applications on 67 per cent of the crop (Table 1).
- The timing of pesticide applications is shown in Figure 35.
- Half of fungicide use on turnips and swedes was for mildew and half was for phoma leaf spot. Reasons were given for 92 per cent of herbicide use; 83 per cent was for general weed control, five per cent for broad-leaved weeds, three per cent for annual meadow grass and one per cent for couch grass. Reasons were provided for 67 per cent of insecticide use; 46 per cent was for diamond-back moth and 21 per cent for flea beetle.
- The most common varieties encountered were Lomond and Ruta Otofte accounting for 20 and 19 per cent of the sample area respectively.

Summary of pesticide use on turnips and swedes

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>kg</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Herbicides</td>
<td>3,277</td>
<td>1,747</td>
<td>67</td>
<td>Metazachlor (1,115), Dimethenamid-P/metazachlor (812)</td>
</tr>
<tr>
<td>Fungicides</td>
<td>79</td>
<td>15</td>
<td>2</td>
<td>Prothioconazole (79)</td>
</tr>
<tr>
<td>Insecticides</td>
<td>283</td>
<td>2</td>
<td>7</td>
<td>Deltamethrin (283)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>4,906</td>
<td>9</td>
<td>80</td>
<td>Thiamethoxam (2,606), Thiram (2,227)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>8,544</td>
<td>1,773</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>
Figure 34 Use of pesticides on turnips and swedes (percentage of total area treated with formulations) – 2017

Figure 35 Timing of herbicide applications on turnips & swedes - 2017
Other fodder crops

- 1,033 hectares of other fodder crops were grown in Scotland in 2017
- Other fodder consists of any crops other than arable silage reported in the ‘other crops for stock-feeding’ category
- In 2017 this consisted of red clover, swedes, kale, stubble turnips and fodder crop mixes
- 48 per cent of the crop was treated with a pesticide (see Figure 36 for types of pesticides applied)
- 1,017 hectares of pesticide formulations and 361 kilograms of pesticides were applied (see summary table below)
- The other fodder crop received on average one application of herbicides on 38 per cent of the crop (Table 1)
- All herbicides were applied in May and all insecticides were applied in June
- All insecticide use was for flea beetle. Eighty per cent of herbicide use was for general weed control and 20 per cent for destroying the previous crop

Summary of estimated pesticide use on other fodder crops

<table>
<thead>
<tr>
<th>Pesticide group</th>
<th>Formulation area treated</th>
<th>Weight of pesticides applied</th>
<th>Percentage of crop treated</th>
<th>Most used formulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbicides</td>
<td>420</td>
<td>356</td>
<td>38</td>
<td>Dimethenamid-P/ Metazachlor (152)</td>
</tr>
<tr>
<td>Insecticides</td>
<td>75</td>
<td>1</td>
<td>7</td>
<td>Lambda-cyhalothrin (75)</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>522</td>
<td>5</td>
<td>30</td>
<td>Thiram (312), Thiamethoxam (210)</td>
</tr>
<tr>
<td>All pesticides</td>
<td>1,017</td>
<td>361</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Figure 36 Use of pesticides on other fodder (percentage of total area treated with formulations) – 2017

- Herbicides: 41%
- Insecticides: 8%
- Seed treatments: 51%
Appendix 1 – Estimated application tables

Table 1 Percentage of each crop treated with pesticides and mean number of spray applications - 2017

<table>
<thead>
<tr>
<th>Crop</th>
<th>Fungicides</th>
<th>Herbicides</th>
<th>Insecticides</th>
<th>Molluscide</th>
<th>Growth Regulators</th>
<th>Any pesticide exc. STs</th>
<th>Seed treatments</th>
<th>Any pesticide inc. STs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% spray apps</td>
</tr>
<tr>
<td>Direct sown grass</td>
<td>0.0</td>
<td>20.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>20.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Undersown grass</td>
<td>48.0</td>
<td>1.3</td>
<td>60.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>8.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Grass 1 - 4 years</td>
<td>0.0</td>
<td>3.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Grass over 5 years</td>
<td>0.0</td>
<td>3.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Grass</td>
<td><0.5</td>
<td>1.3</td>
<td>4.0</td>
<td><0.5</td>
<td>1.0</td>
<td>0.0</td>
<td><0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Rough grazing</td>
<td>0.0</td>
<td><0.5</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td><0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Cont...
<table>
<thead>
<tr>
<th>Crop</th>
<th>Fungicides</th>
<th>Herbicides</th>
<th>Insecticides</th>
<th>Molluscide</th>
<th>Growth Regulators</th>
<th>Any pesticide exc. STs</th>
<th>Seed-treatments</th>
<th>Any pesticide inc. STs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% spray apps</td>
</tr>
<tr>
<td>Arable Silage</td>
<td>10</td>
<td>1.0</td>
<td>21</td>
<td>1.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fodder Beet</td>
<td>0</td>
<td>0.0</td>
<td>100</td>
<td>3.2</td>
<td>34</td>
<td>1.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Fodder rape</td>
<td>0</td>
<td>0.0</td>
<td>27</td>
<td>1.0</td>
<td>2</td>
<td>1.0</td>
<td>5</td>
<td>1.0</td>
</tr>
<tr>
<td>Kale & Cabbage</td>
<td>0</td>
<td>0.0</td>
<td>19</td>
<td>1.2</td>
<td>14</td>
<td>1.1</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>Maize</td>
<td>0</td>
<td>0.0</td>
<td>100</td>
<td>1.1</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Stubble Turnips</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Turnips & Swedes</td>
<td>2</td>
<td>1.0</td>
<td>67</td>
<td>1.1</td>
<td>7</td>
<td>1.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other Fodder Crops</td>
<td>0</td>
<td>0.0</td>
<td>38</td>
<td>1.0</td>
<td>7</td>
<td>1.0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total Fodder Crops</td>
<td>4</td>
<td>1.0</td>
<td>40</td>
<td>1.3</td>
<td>5</td>
<td>1.0</td>
<td>1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note: STs = seed treatments
The average number of spray applications is calculated only on the areas receiving each pesticide group and therefore the minimum number of applications is always one (see Appendix 3 – definitions and notes for details).
Table 2 Grassland seed treatment formulations - 2017

Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Seed treatment</th>
<th>Direct sown grass</th>
<th>Undersown grass</th>
<th>Total 2017</th>
<th>2017</th>
<th>2013<sup>(1)</sup></th>
<th>2013<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha kg</td>
<td>ha kg</td>
</tr>
<tr>
<td>Thiram</td>
<td>925</td>
<td>5</td>
<td>925</td>
<td>83</td>
<td>489</td>
<td>53</td>
</tr>
<tr>
<td>All seed treatments</td>
<td>925</td>
<td>5</td>
<td>925</td>
<td>83</td>
<td>1,490</td>
<td>53</td>
</tr>
<tr>
<td>No information seed treatment<sup>(2)</sup></td>
<td>0</td>
<td>0</td>
<td>74</td>
<td>1</td>
<td>74 N/A</td>
<td>0 N/A</td>
</tr>
<tr>
<td>No seed treatment</td>
<td>18,632</td>
<td>95</td>
<td>7,488</td>
<td>99</td>
<td>26,120 N/A</td>
<td>41,931 N/A</td>
</tr>
<tr>
<td>Area grown</td>
<td>19,587</td>
<td>7,563</td>
<td>27,150</td>
<td></td>
<td>43,421</td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ For a full list of formulations recorded in 2013 please refer to the 2013 report⁽³⁾

⁽²⁾ Refer to Appendix 3 for definitions

N/A = not applicable

Table 3 Grassland insecticide formulations - 2017

Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Direct sown grass</th>
<th>Undersown grass</th>
<th>Grass 1 to 4 years</th>
<th>Grass over 5 years</th>
<th>Rough grazing</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013<sup>(1)</sup></th>
<th>2013<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha %</td>
<td>ha %</td>
<td>ha %</td>
<td>ha kg</td>
<td>ha kg</td>
<td>2013<sup>(1)</sup></td>
<td>2013<sup>(1)</sup></td>
</tr>
<tr>
<td>Lambda-cyhalothrin</td>
<td>0</td>
<td>0</td>
<td>69 1</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0 69</td>
<td>0 0 <0.5</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>All insecticides</td>
<td>0</td>
<td>0</td>
<td>69 1</td>
<td>0 0</td>
<td>0 0 69</td>
<td>0 0 <0.5</td>
<td>5,811</td>
<td>4113</td>
<td></td>
</tr>
<tr>
<td>Area grown</td>
<td>19,587</td>
<td>7,563</td>
<td>186,667</td>
<td>1,112,553</td>
<td>3,037,615</td>
<td>4,363,985</td>
<td>4,400,870</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ For a full list of formulations recorded in 2013 please refer to the 2013 report⁽³⁾
Table 4 Grassland fungicide formulations - 2017

Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Fungicides</th>
<th>Direct sown grass</th>
<th>Undersown grass</th>
<th>Grass 1 to 4 years</th>
<th>Grass over 5 years</th>
<th>Rough grazing</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013(1)</th>
<th>2013(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
</tr>
<tr>
<td>Azoxystrobin/</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bixafen/prothioconazole</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Boscalid/epoxiconazole</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>0</td>
<td>0</td>
<td>1,511</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cypprodinil</td>
<td>0</td>
<td>0</td>
<td>299</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Epoxiconazole/</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fenpropimorph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxiconazole/</td>
<td>0</td>
<td>0</td>
<td>551</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fenpropimorph/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metrafenone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxiconazole/</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>isopyrazam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenpropimorph</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fenpropimorph/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyraclostrobin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoxastrobin/</td>
<td>0</td>
<td>0</td>
<td>118</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>prothioconazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trifloxystrobin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluxapyroxad</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Folpet</td>
<td>0</td>
<td>0</td>
<td>87</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Cont...
<table>
<thead>
<tr>
<th>Fungicides</th>
<th>Direct sown grass</th>
<th>Undersown grass</th>
<th>Grass 1 to 4 years</th>
<th>Grass over 5 years</th>
<th>Rough grazing</th>
<th>Total 2017</th>
<th>Total 2013</th>
<th>2013(1)</th>
<th>2013(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
</tr>
<tr>
<td>Penthiopyrad</td>
<td>0</td>
<td>0</td>
<td>259</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prothioconazole</td>
<td>0</td>
<td>0</td>
<td>282</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prothioconazole/ spiroxamine</td>
<td>0</td>
<td>0</td>
<td>349</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prothioconazole/ tebuconazole</td>
<td>0</td>
<td>0</td>
<td>932</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prothioconazole/ trifloxystrobin</td>
<td>0</td>
<td>0</td>
<td>1,142</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All fungicides</td>
<td>0</td>
<td>0</td>
<td>7,065</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Area grown

19,587 | 7,563 | 186,667 | 1,112,553 | 3,037,615 | 4,363,985 | 4,400,870

(1) For a full list of formulations recorded in 2013 please refer to the 2013 report[3]
Table 5 Grassland herbicide and growth regulator formulations – 2017

Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Direct sown grass</th>
<th>Undersown grass</th>
<th>Grass 1 to 4 years</th>
<th>Grass over 5 years</th>
<th>Rough grazing</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013(1)</th>
<th>2013(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha %</td>
<td>ha %</td>
<td>ha %</td>
<td>ha %</td>
<td>ha %</td>
<td>ha kg</td>
<td>ha kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td>0 0</td>
<td>0 0</td>
<td>183 <0.5</td>
<td>1,558 <0.5</td>
<td>379 <0.5</td>
<td>2,120</td>
<td>2,518</td>
<td>5,043</td>
<td>6,584</td>
</tr>
<tr>
<td>2,4-D/dicamba</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>917 <0.5</td>
<td>0 0</td>
<td>917</td>
<td>447</td>
<td>152</td>
<td>211</td>
</tr>
<tr>
<td>2,4-D/dicamba/triclopyr</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>17 <0.5</td>
<td>0 0</td>
<td>17</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2,4-D/glyphosate</td>
<td>207 1</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>207</td>
<td>331</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2,4-D/MCPA</td>
<td>207 1</td>
<td>709 9</td>
<td>146 <0.5</td>
<td>1,527 <0.5</td>
<td>298 <0.5</td>
<td>2,888</td>
<td>5,307</td>
<td>2,154</td>
<td>4,754</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>1,132 6</td>
<td>2,746 36</td>
<td>192 <0.5</td>
<td>507 <0.5</td>
<td>0 0</td>
<td>4,577</td>
<td>5,033</td>
<td>8,112</td>
<td>9,540</td>
</tr>
<tr>
<td>2,4-DB/MCPA</td>
<td>113 1</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>113</td>
<td>190</td>
<td>257</td>
<td>385</td>
</tr>
<tr>
<td>Amidosulfuron</td>
<td>132 1</td>
<td>0 0</td>
<td>697 <0.5</td>
<td>220 <0.5</td>
<td>0 0</td>
<td>1,049</td>
<td>42</td>
<td>468</td>
<td>17</td>
</tr>
<tr>
<td>Aminopyralid/triclopyr</td>
<td>73 <0.5</td>
<td>0 0</td>
<td>424 <0.5</td>
<td>3,938 <0.5</td>
<td>0 0</td>
<td>4,436</td>
<td>2,185</td>
<td>652</td>
<td>343</td>
</tr>
<tr>
<td>Asulam</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>142 <0.5</td>
<td>5,886</td>
<td>6,028</td>
<td>24,817</td>
<td>5,758</td>
</tr>
<tr>
<td>Clopyralid/florasulam/fluroxypyr</td>
<td>177 1</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>177</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clopyralid/fluroxypyr/triclopyr</td>
<td>0 0</td>
<td>0 0</td>
<td>145 <0.5</td>
<td>461 <0.5</td>
<td>0 0</td>
<td>606</td>
<td>441</td>
<td>1,435</td>
<td>781</td>
</tr>
<tr>
<td>Clopyralid/triclopyr</td>
<td>64 <0.5</td>
<td>0 0</td>
<td>743 <0.5</td>
<td>6,591 1</td>
<td>0 0</td>
<td>7,398</td>
<td>2,649</td>
<td>1,988</td>
<td>845</td>
</tr>
<tr>
<td>Dicamba/MCPA/mecoprop-P</td>
<td>0 0</td>
<td>87 1</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>87</td>
<td>121</td>
<td>836</td>
<td>1,057</td>
</tr>
</tbody>
</table>

Cont...
Table 5 Grassland herbicide and growth regulator formulations – 2017 continued

Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Direct sown grass</th>
<th>Undersown grass</th>
<th>Grass 1 to 4 years</th>
<th>Grass over 5 years</th>
<th>Rough grazing</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013(1)</th>
<th>2013(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
</tr>
<tr>
<td>Dicamba/mecoprop-P</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>Florasulam/fluroxypyr</td>
<td>0</td>
<td>0</td>
<td>522</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>522</td>
</tr>
<tr>
<td>Fluroxypyr</td>
<td>413</td>
<td>2</td>
<td>867</td>
<td>11</td>
<td>1,043</td>
<td>1</td>
<td>8,804</td>
<td>1</td>
<td>298</td>
</tr>
<tr>
<td>Fluroxypyr/triclopyr</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>931</td>
<td><0.5</td>
<td>8,061</td>
<td>1</td>
<td>828</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>1,517</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>240</td>
<td><0.5</td>
<td>2,037</td>
<td><0.5</td>
<td>927</td>
</tr>
<tr>
<td>MCPA</td>
<td>313</td>
<td>2</td>
<td>430</td>
<td>6</td>
<td>146</td>
<td><0.5</td>
<td>10,489</td>
<td>1</td>
<td>5,762</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>228</td>
<td><0.5</td>
<td>0</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>48</td>
<td><0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>285</td>
<td><0.5</td>
<td>0</td>
</tr>
<tr>
<td>Thifensulfuron-methyl/tribenuron-methyl</td>
<td>0</td>
<td>0</td>
<td>188</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>652</td>
<td>3</td>
<td>2,735</td>
<td>36</td>
<td>192</td>
<td><0.5</td>
<td>223</td>
<td><0.5</td>
<td>0</td>
</tr>
<tr>
<td>Unspecified herbicide(2)</td>
<td>297</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td><0.5</td>
<td>45</td>
<td><0.5</td>
<td>0</td>
</tr>
<tr>
<td>All herbicides</td>
<td>5,396</td>
<td>20</td>
<td>8,352</td>
<td>60</td>
<td>5,098</td>
<td>3</td>
<td>46,050</td>
<td>3</td>
<td>14,378</td>
</tr>
</tbody>
</table>

Cont...
Table 5 Grassland herbicide and growth regulator formulations – 2017 continued
Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Growth regulators</th>
<th>Direct sown grass</th>
<th>Undersown grass</th>
<th>Grass 1 to 4 years</th>
<th>Grass over 5 years</th>
<th>Rough grazing</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013(1)</th>
<th>2013(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>kg</td>
<td>ha</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>2-Chloroethylphosphonic acid</td>
<td>0</td>
<td>0</td>
<td>189</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chlormequat</td>
<td>0</td>
<td>0</td>
<td>258</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mepiquat chloride/prohexadione-calcium</td>
<td>0</td>
<td>0</td>
<td>159</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All growth regulators</td>
<td>0</td>
<td>0</td>
<td>606</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) For a full list of formulations recorded in 2013 please refer to the 2013 report(3)
(2) Refer to Appendix 3 for definitions
Table 6 Fodder crop seed treatment formulations - 2017

<table>
<thead>
<tr>
<th>Seed treatments</th>
<th>Arable silage</th>
<th>Fodder beet</th>
<th>Fodder rape</th>
<th>Kale & cabbage</th>
<th>Maize</th>
<th>Stubble turnips</th>
<th>Turnips & swedes</th>
<th>Other fodder (1)</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013 (2)</th>
<th>2013 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
</tr>
<tr>
<td>Fludioxonil</td>
<td>618</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Fludioxonil/metalaxyl-M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fluopyram/ prothioconazole/ tebuconazole</td>
<td>751</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Imazalil/ipconazole</td>
<td>759</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Methiocarb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>792</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prochloraz/ triticonazole</td>
<td>417</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Prothioconazole/ tebuconazole</td>
<td>34</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tefluthrin</td>
<td>0</td>
<td>0</td>
<td>356</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>622</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,606</td>
<td>68</td>
</tr>
<tr>
<td>Thiram</td>
<td>271</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>3</td>
<td>379</td>
<td>20</td>
<td>409</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unspecified seed treatment (1)</td>
<td>324</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>All seed treatments</td>
<td>3,174</td>
<td>48</td>
<td>356</td>
<td>58</td>
<td>63</td>
<td>3</td>
<td>1,001</td>
<td>35</td>
<td>1,243</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Cont...
Table 6 Fodder crop seed treatment formulations – 2017 continued

Area (ha) weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Seed treatments</th>
<th>Arable silage</th>
<th>Fodder beet</th>
<th>Fodder rape</th>
<th>Kale & cabbage</th>
<th>Maize</th>
<th>Stubble turnips</th>
<th>Turnips & swedes</th>
<th>Other fodder(1)</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013(2)</th>
<th>2013(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha %</td>
<td>ha kg</td>
<td>ha kg</td>
<td>2013</td>
<td>2013</td>
</tr>
<tr>
<td>No information</td>
<td>123</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>531</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>seed treatment(1)</td>
<td></td>
</tr>
<tr>
<td>No seed</td>
<td>2,853</td>
<td>49</td>
<td>255</td>
<td>42</td>
<td>1,905</td>
<td>95</td>
<td>1,039</td>
<td>54</td>
<td>7,679</td>
<td>N/A</td>
<td>8,170</td>
<td>N/A</td>
</tr>
<tr>
<td>treatment</td>
<td></td>
</tr>
<tr>
<td>Crop grown from</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>transplant</td>
<td></td>
</tr>
<tr>
<td>Area grown</td>
<td>5,801</td>
<td>611</td>
<td>2,007</td>
<td>1,915</td>
<td>792</td>
<td>339</td>
<td>3,806</td>
<td>1,033</td>
<td>16,304</td>
<td>19,524</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Refer to Appendix 3 for definitions
(2) For a full list of formulations recorded in 2013 please refer to the 2013 report(3)
N/A = not applicable
Table 7 Fodder crop insecticide and molluscicide formulations – 2017

Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Insecticides</th>
<th>Arable silage</th>
<th>Fodder beet</th>
<th>Fodder rape</th>
<th>Kale & cabbage</th>
<th>Maize</th>
<th>Stubble turnips</th>
<th>Turnips & swedes</th>
<th>Other fodder<sup>(1)</sup></th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013<sup>(2)</sup></th>
<th>2013<sup>(2)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>81</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>283</td>
</tr>
<tr>
<td>Lambda-cyhalothrin</td>
<td>0</td>
<td>0</td>
<td>210</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unspecified insecticide<sup>(1)</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>165</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All insecticides</td>
<td>0</td>
<td>0</td>
<td>210</td>
<td>34</td>
<td>36</td>
<td>2</td>
<td>293</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Molluscicides</td>
<td></td>
</tr>
<tr>
<td>Metaldehyde</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>107</td>
<td>5</td>
<td>33</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All molluscicides</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>107</td>
<td>5</td>
<td>33</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Area grown</td>
<td>5,801</td>
<td>611</td>
<td>2,007</td>
<td>1,915</td>
<td>792</td>
<td>339</td>
<td>3,806</td>
<td>1,033</td>
<td>16,304</td>
<td>19,524</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ Refer to Appendix 3 for definitions
⁽²⁾ For a full list of formulations recorded in 2013 please refer to the 2013 report⁽³⁾
N/A = not applicable
Table 8 Fodder crop fungicide formulations – 2017
Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Fungicides</th>
<th>Arable silage</th>
<th>Fodder beet</th>
<th>Fodder rape</th>
<th>Kale & cabbage</th>
<th>Maize</th>
<th>Stubble turnips</th>
<th>Turnips & swedes</th>
<th>Other fodder(1)</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013 (1)</th>
<th>2013 (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bixafen/fluoxastrobin/prothioconazole</td>
<td>181</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>181</td>
<td>38</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>220</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>Epoxiconazole/fenpropimorph</td>
<td>52</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>9</td>
</tr>
<tr>
<td>Fluoxastrobin/prothioconazole/trifloxystrobin</td>
<td>148</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>148</td>
<td>24</td>
</tr>
<tr>
<td>Prothioconazole</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Prothioconazole/protebuconazole</td>
<td>88</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>5</td>
</tr>
<tr>
<td>Prothioconazole/trifloxystrobin</td>
<td>116</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>116</td>
<td>17</td>
</tr>
<tr>
<td>All fungicides</td>
<td>806</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>885</td>
<td>208</td>
</tr>
<tr>
<td>Area grown</td>
<td>5,801</td>
<td>611</td>
<td>2,007</td>
<td>1,915</td>
<td>792</td>
<td>339</td>
<td>3,806</td>
<td>1,033</td>
<td>16,304</td>
<td>19,524</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) For a full list of formulations recorded in 2013 please refer to the 2013 report[3]
Table 9 Fodder crop herbicide formulations – 2017

<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Arable silage</th>
<th>Fodder beet</th>
<th>Fodder rape</th>
<th>Kale & cabbage</th>
<th>Maize</th>
<th>Stubble turnips</th>
<th>Turnips & swedes</th>
<th>Other fodder(1)</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013 (2)</th>
<th>2013 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
</tr>
<tr>
<td>2,4-D/glyphosate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2,4-D/MCPA</td>
<td>97</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2,4-DB</td>
<td>241</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2,4-DB/MCPA</td>
<td>174</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Bromoxynil/terbuthylazine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>0</td>
<td>0</td>
<td>280</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chloridazon/metamitron</td>
<td>0</td>
<td>0</td>
<td>123</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clomazone</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desmedipham/ethofumesate/lenacil/phenmedipham</td>
<td>0</td>
<td>0</td>
<td>878</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Desmedipham/ethofumesate/phenmedipham</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dicamba/MCPA/mecoprop-P</td>
<td>14</td>
<td><0.5</td>
<td>0</td>
</tr>
<tr>
<td>Dicamba/mecoprop-P</td>
<td>110</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Cont...
Table 9 Fodder crop herbicide formulations – 2017 continued

Area (ha), weight (kg) and percentage of crop treated

<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Arable silage</th>
<th>Fodder beet</th>
<th>Fodder rape</th>
<th>Kale & cabbage</th>
<th>Maize</th>
<th>Stubble turnips</th>
<th>Turnips & swedes</th>
<th>Other fodder(1)</th>
<th>Total 2017</th>
<th>Total 2017(2)</th>
<th>2013(2)</th>
<th>2013(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
<td>ha</td>
<td>%</td>
</tr>
<tr>
<td>Diflufenican</td>
<td>72</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dimethenamid-P/metazachlor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>812</td>
<td>21</td>
<td>152</td>
<td>15</td>
</tr>
<tr>
<td>Dimethenamid-P/pendimethalin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>240</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethofumesate/metamitron</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Florasulam/fluroxypyr</td>
<td>45</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fluroxypyr</td>
<td>145</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>106</td>
<td>2</td>
<td>77</td>
<td>13</td>
<td>383</td>
<td>19</td>
<td>231</td>
<td>12</td>
<td>97</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lenacil/triflusulfuron-methyl</td>
<td>0</td>
<td>0</td>
<td>459</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MCPA</td>
<td>48</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mesotrione/terbutylazine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>102</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metamitron</td>
<td>0</td>
<td>0</td>
<td>919</td>
<td>92</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>132</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>48</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cont..
<table>
<thead>
<tr>
<th>Herbicides</th>
<th>Arable silage</th>
<th>Fodder beet</th>
<th>Fodder rape</th>
<th>Kale & cabbage</th>
<th>Maize</th>
<th>Stubble turnips</th>
<th>Turnips & swedes</th>
<th>Other fodder(1)</th>
<th>Total 2017</th>
<th>Total 2017</th>
<th>2013 (2)</th>
<th>2013 (2)</th>
<th></th>
</tr>
</thead>
</table>
| Metsulfuron-methyl/thifensulfuron-methyl | 110 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 110
| Metsulfuron-methyl/tribenuron-methyl | 14 | <0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14
| Nicosulfuron | 0 | 0 | 0 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 31
| Pendimethalin | 290 | 5 | 0 | 0 | 0 | 0 | 649 | 82 | 0 | 0 | 0 | 0 | 939
| Propaquizafop | 0 | 0 | 69 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 69
| S-metolachlor | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 63 | 2 | 0 | 0 | 63
| Tribenuron-methyl | 319 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 319
| Triflusulfuron-methyl | 0 | 0 | 312 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 312
| Unspecified herbicide(1) | 116 | 2 | 0 | 0 | 130 | 6 | 25 | 1 | 0 | 0 | 0 | 193 | 5
| All herbicides | 1,948 | 21 | 3,194 | 100 | 585 | 27 | 503 | 19 | 1,149 | 100 | 0 | 0 | 3,277
| Area grown | 5,801 | 611 | 2,007 | 1,915 | 792 | 339 | 3,806 | 1,033 | 16,304 | 7,647 | 17,574 | 11,776 | |

(1) Refer to Appendix 3 for definitions
(2) For a full list of formulations recorded in 2013 please refer to the 2013 report
N/A = not applicable
Table 10 Compounds encountered in the grassland and fodder survey for the first time in 2017

<table>
<thead>
<tr>
<th>Active substance</th>
<th>Type (1)</th>
<th>Area treated (ha)</th>
<th>Amount used (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethenamid-P</td>
<td>H</td>
<td>1,304</td>
<td>599</td>
</tr>
<tr>
<td>Bixafen</td>
<td>F</td>
<td>265</td>
<td>11</td>
</tr>
<tr>
<td>Fluxapyroxad</td>
<td>F</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>S-metolachlor</td>
<td>H</td>
<td>63</td>
<td>84</td>
</tr>
</tbody>
</table>

(1) Pesticide type = F: Fungicide and H: Herbicide
Table 11 Mode of action/chemical group of insecticide active substances on all grass and fodder crops - 2017

Area (ha) and weight (kg) of active substances for all crops

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Active Substance</th>
<th>Chemical Group</th>
<th>IRAC Group</th>
<th>Total Grass and Fodder 2017</th>
<th>Total Grass and Fodder 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ha</td>
<td>kg</td>
</tr>
<tr>
<td>Sodium channel modulators</td>
<td>Cypermethrin</td>
<td>Pyrethroid</td>
<td>3A</td>
<td>36</td>
<td><0.5</td>
</tr>
<tr>
<td></td>
<td>Deltamethrin</td>
<td>Pyrethroid</td>
<td>3A</td>
<td>364</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lambda-cyhalothrin</td>
<td>Pyrethroid</td>
<td>3A</td>
<td>402</td>
<td>6</td>
</tr>
<tr>
<td>All sodium channel modulators</td>
<td></td>
<td></td>
<td></td>
<td>802</td>
<td>9</td>
</tr>
<tr>
<td>All insecticides</td>
<td></td>
<td></td>
<td></td>
<td>802</td>
<td>9</td>
</tr>
<tr>
<td>Area grown</td>
<td></td>
<td></td>
<td></td>
<td>4,380,288</td>
<td></td>
</tr>
</tbody>
</table>

Note: Active substances have been grouped by their mode of action. Full details on mode of action classification can be found on the Insecticide Resistance Action Committee (IRAC) webpage.\(^{(8)}\)
Table 12 Mode of action/chemical group of fungicide active substances on all grass and fodder crops - 2017

Area (ha) and weight (kg) of active substances for all crops

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Active Substance</th>
<th>Group Name</th>
<th>Chemical Group</th>
<th>FRAC Group</th>
<th>Total Grass and Fodder 2017</th>
<th>Total Grass and Fodder 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2017 ha</td>
<td>2017 kg</td>
</tr>
<tr>
<td>C: Respiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bixafen</td>
<td>SDHI</td>
<td>Pyrazole-4-carboxamides</td>
<td>7</td>
<td>265</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Boscalid</td>
<td>SDHI</td>
<td>Pyridine-carboxamides</td>
<td>7</td>
<td>92</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Fluxapyroxad</td>
<td>SDHI</td>
<td>Pyrazole-4-carboxamides</td>
<td>7</td>
<td>120</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Isopyrazam</td>
<td>SDHI</td>
<td>Pyrazole-4-carboxamides</td>
<td>7</td>
<td>96</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Penthionpyrad</td>
<td>SDHI</td>
<td>Pyrazole-4-carboxamides</td>
<td>7</td>
<td>259</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>Qo inhibitors</td>
<td>Strobilurin</td>
<td>11</td>
<td>120</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fluoxastrobin</td>
<td>Qo inhibitors</td>
<td>Strobilurin</td>
<td>11</td>
<td>1,171</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Pyraclostrobin</td>
<td>Qo inhibitors</td>
<td>Strobilurin</td>
<td>11</td>
<td>118</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Trifloxystrobin</td>
<td>Qo inhibitors</td>
<td>Strobilurin</td>
<td>11</td>
<td>2,247</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>All respiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,487</td>
<td>211</td>
</tr>
<tr>
<td>D: Amino acids and protein synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprodinil</td>
<td>Anilino - pyrimidine</td>
<td>Anilino - pyrimidine</td>
<td>9</td>
<td>299</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>All amino acids and protein synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>299</td>
<td>83</td>
</tr>
<tr>
<td>G: Sterol biosynthesis in membranes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epoxiconazole</td>
<td>Demethylation inhibitor</td>
<td>Triazoles</td>
<td>3</td>
<td>883</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Prothioconazole</td>
<td>Demethylation inhibitor</td>
<td>Triazoles</td>
<td>3</td>
<td>4,241</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Tebuconazole</td>
<td>Demethylation inhibitor</td>
<td>Triazoles</td>
<td>3</td>
<td>1,020</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>

Cont…
Table 12 Mode of action/chemical group of fungicide active substances on all grass and fodder crops – 2017 continued

Area (ha) and weight (kg) of active substances for all crops

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Active Substance</th>
<th>Group Name</th>
<th>Chemical Group</th>
<th>FRAC Group</th>
<th>Total Grass and Fodder 2017</th>
<th>Total Grass and Fodder 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ha</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,397</td>
<td>629</td>
</tr>
<tr>
<td>All sterol biosynthesis in membranes</td>
<td>Fenpropimorph</td>
<td>Morpholine</td>
<td>Morpholines</td>
<td>5</td>
<td>904</td>
<td>167</td>
</tr>
<tr>
<td>M: Chemicals with multi-site activity</td>
<td>Spiroxamine</td>
<td>Morpholine</td>
<td>Spiroketal-amines</td>
<td>5</td>
<td>349</td>
<td>36</td>
</tr>
<tr>
<td>All chemicals with multi-site activity</td>
<td>Folpet</td>
<td>Phthalimide</td>
<td>Phthalimide</td>
<td>M 04</td>
<td>87</td>
<td>37</td>
</tr>
<tr>
<td>All unknown mode of action</td>
<td>Chlorothalonil</td>
<td>Chloronitrile</td>
<td>Chloronitrile</td>
<td>M 05</td>
<td>1,851</td>
<td>867</td>
</tr>
<tr>
<td>U: Unknown mode of action</td>
<td>Metrafenone</td>
<td>Aryl-phenyl-ketone</td>
<td>Benzophenone</td>
<td>U 08</td>
<td>551</td>
<td>38</td>
</tr>
<tr>
<td>All fungicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,938</td>
<td>904</td>
</tr>
<tr>
<td>Area grown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14,673</td>
<td>1,864</td>
</tr>
</tbody>
</table>

Note: Active substances have been grouped by their mode of action. Full details on mode of action classification can be found on the Fungicide Resistance Action Committee (FRAC) webpage[^9].
Table 13 Mode of action/chemical group of herbicide active substances on all grass and fodder crops – 2017

Area (ha) and weight (kg) of active substances for all crops

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Active substance</th>
<th>Chemical Group</th>
<th>HRAC Group</th>
<th>Total Grass and Fodder 2017 (ha)</th>
<th>Total Grass and Fodder 2017 (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition of acetyl CoA carboxylase</td>
<td>Propaquizafop</td>
<td>Aryloxyphenoxy-propionate 'FOPS'</td>
<td>A</td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td>All inhibition of acetyl CoA carboxylase</td>
<td></td>
<td></td>
<td></td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td>Inhibition of acetolactate synthase ALS</td>
<td>Amidosulfuron</td>
<td>Sulfonyleurea</td>
<td>B</td>
<td>1,049</td>
<td>42</td>
</tr>
<tr>
<td>Inhibition of acetolactate synthase ALS</td>
<td>Metsulfuron-methyl</td>
<td>Sulfonyleurea</td>
<td>B</td>
<td>399</td>
<td>1</td>
</tr>
<tr>
<td>Inhibition of acetolactate synthase ALS</td>
<td>Nicosulfuron</td>
<td>Sulfonyleurea</td>
<td>B</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>Inhibition of acetolactate synthase ALS</td>
<td>Thifensulfuron-methyl</td>
<td>Sulfonyleurea</td>
<td>B</td>
<td>630</td>
<td>7</td>
</tr>
<tr>
<td>Inhibition of acetolactate synthase ALS</td>
<td>Tribenuron-methyl</td>
<td>Sulfonyleurea</td>
<td>B</td>
<td>4,322</td>
<td>25</td>
</tr>
<tr>
<td>Inhibition of acetolactate synthase ALS</td>
<td>Triflusulfuron-methyl</td>
<td>Sulfonyleurea</td>
<td>B</td>
<td>771</td>
<td>12</td>
</tr>
<tr>
<td>Inhibition of acetolactate synthase ALS</td>
<td>Florasulam</td>
<td>Triazolopyrimidine</td>
<td>B</td>
<td>745</td>
<td>3</td>
</tr>
<tr>
<td>All inhibition of acetolactate synthase ALS</td>
<td></td>
<td></td>
<td></td>
<td>7,947</td>
<td>91</td>
</tr>
<tr>
<td>Inhibition of photosynthesis at photosystem II</td>
<td>Chloridazon</td>
<td>Pyridazinone</td>
<td>C1</td>
<td>403</td>
<td>468</td>
</tr>
<tr>
<td>Inhibition of photosynthesis at photosystem II</td>
<td>Desmedipham</td>
<td>Phenyl-carbamate</td>
<td>C1</td>
<td>906</td>
<td>59</td>
</tr>
<tr>
<td>Inhibition of photosynthesis at photosystem II</td>
<td>Lenacil</td>
<td>Uracil</td>
<td>C1</td>
<td>878</td>
<td>125</td>
</tr>
<tr>
<td>Inhibition of photosynthesis at photosystem II</td>
<td>Metamitron</td>
<td>Triazinone</td>
<td>C1</td>
<td>1,013</td>
<td>1,133</td>
</tr>
<tr>
<td>Inhibition of photosynthesis at photosystem II</td>
<td>Phenmedipham</td>
<td>Phenyl-carbamate</td>
<td>C1</td>
<td>906</td>
<td>79</td>
</tr>
<tr>
<td>Inhibition of photosynthesis at photosystem II</td>
<td>Terbuthylazine</td>
<td>Triazine</td>
<td>C1</td>
<td>131</td>
<td>48</td>
</tr>
</tbody>
</table>

Cont...
Table 13 Mode of action/chemical group of herbicide active substances – 2017 continued

Area (ha) and weight (kg) of active substances for all crops

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Active substance</th>
<th>Chemical Group</th>
<th>HRAC Group</th>
<th>Total Grass and Fodder 2017</th>
<th>Total Grass and Fodder 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoxynil</td>
<td>Nitrile</td>
<td>C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All inhibition of photosynthesis at photosystem II</td>
<td></td>
<td></td>
<td></td>
<td>4,268</td>
<td>1,914</td>
</tr>
<tr>
<td>Bleaching: Inhibition of carotenoid biosynthesis</td>
<td>Diflufenican</td>
<td>Pyridinecarboxamide</td>
<td>F1</td>
<td>72</td>
<td>12</td>
</tr>
<tr>
<td>All bleaching: Inhibition of carotenoid biosynthesis</td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>12</td>
</tr>
<tr>
<td>Bleaching: Inhibition of 4-hydroxyphenyl-pyruvate-d</td>
<td>Mesotrione</td>
<td>Triketone</td>
<td>F2</td>
<td>102</td>
<td>10</td>
</tr>
<tr>
<td>All bleaching: Inhibition of 4-hydroxyphenyl-pyruvate-d</td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>10</td>
</tr>
<tr>
<td>Bleaching: DOXP inhibitors</td>
<td>Clomazone</td>
<td>Isoxazolidinone</td>
<td>F4</td>
<td>784</td>
<td>49</td>
</tr>
<tr>
<td>All bleaching: DOXP inhibitors</td>
<td></td>
<td></td>
<td></td>
<td>784</td>
<td>49</td>
</tr>
<tr>
<td>Inhibition of EPSP synthase</td>
<td>Glyphosate</td>
<td>Glycine</td>
<td>G</td>
<td>6,083</td>
<td>8,319</td>
</tr>
<tr>
<td>All inhibition of EPSP synthase</td>
<td></td>
<td></td>
<td></td>
<td>6,083</td>
<td>8,319</td>
</tr>
<tr>
<td>Microtubule assembly inhibition</td>
<td>Pendimethalin</td>
<td>Dinitroaniline</td>
<td>K1</td>
<td>939</td>
<td>954</td>
</tr>
<tr>
<td>All microtubule assembly inhibition</td>
<td></td>
<td></td>
<td></td>
<td>939</td>
<td>954</td>
</tr>
<tr>
<td>Inhibition of DHP</td>
<td>Asulam</td>
<td>Carbamate</td>
<td>I</td>
<td>6,028</td>
<td>24,817</td>
</tr>
<tr>
<td>All inhibition of DHP</td>
<td></td>
<td></td>
<td></td>
<td>6,028</td>
<td>24,817</td>
</tr>
<tr>
<td>Inhibition of VLCFAs</td>
<td>Dimethenamid-P</td>
<td>Chloroacetamide</td>
<td>K3</td>
<td>1,304</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td>Metazachlor</td>
<td>Chloroacetamide</td>
<td>K3</td>
<td>2,392</td>
<td>1,100</td>
</tr>
</tbody>
</table>

Cont...
Table 13 Mode of action/chemical group of herbicide active substances – 2017 continued

Area (ha) and weight (kg) of active substances for all crops

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Active substance</th>
<th>Chemical Group</th>
<th>HRAC Group</th>
<th>Total Grass and Fodder 2017 ha</th>
<th>Total Grass and Fodder 2017 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-metolachlor</td>
<td>Chloroacetamide</td>
<td>K3</td>
<td>63</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>All inhibition of VLCFAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibition of lipid synthesis</td>
<td>Ethofumesate</td>
<td>Benzofuran</td>
<td>N</td>
<td>954</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All inhibition of lipid synthesis</td>
<td></td>
<td></td>
<td></td>
<td>954</td>
<td>114</td>
</tr>
<tr>
<td>Action like indole acetic acid</td>
<td>2,4-D</td>
<td>Phenoxy-carboxylic acid</td>
<td>O</td>
<td>6,150</td>
<td>5,934</td>
</tr>
<tr>
<td></td>
<td>2,4-DB</td>
<td>Phenoxy-carboxylic acid</td>
<td>O</td>
<td>5,105</td>
<td>5,678</td>
</tr>
<tr>
<td></td>
<td>MCPP</td>
<td>Phenoxy-carboxylic acid</td>
<td>O</td>
<td>20,560</td>
<td>26,536</td>
</tr>
<tr>
<td></td>
<td>Mecoprop-P</td>
<td>Phenoxy-carboxylic acid</td>
<td>O</td>
<td>280</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Aminopyralid</td>
<td>Pyridine carboxylic acid</td>
<td>O</td>
<td>4,436</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Clyphyralid</td>
<td>Pyridine carboxylic acid</td>
<td>O</td>
<td>8,181</td>
<td>1,236</td>
</tr>
<tr>
<td></td>
<td>Fluroxypyr</td>
<td>Pyridine carboxylic acid</td>
<td>O</td>
<td>22,742</td>
<td>5,646</td>
</tr>
<tr>
<td></td>
<td>Triclopyr</td>
<td>Pyridine carboxylic acid</td>
<td>O</td>
<td>19,831</td>
<td>5,872</td>
</tr>
<tr>
<td></td>
<td>Dicamba</td>
<td>Benzoic acid</td>
<td>O</td>
<td>1,214</td>
<td>138</td>
</tr>
<tr>
<td>All action like indole acetic acid</td>
<td></td>
<td></td>
<td></td>
<td>88,499</td>
<td>51,386</td>
</tr>
<tr>
<td>All herbicides</td>
<td></td>
<td></td>
<td></td>
<td>119,504</td>
<td>89,461</td>
</tr>
<tr>
<td>Area grown</td>
<td></td>
<td></td>
<td></td>
<td>4,380,288</td>
<td></td>
</tr>
</tbody>
</table>

Note: Active substances have been grouped by their mode of action. Full details on mode of action classification can be found on the Herbicide Resistance Action Committee (HRAC) webpage[10]
Table 14 Principal active substances by area treated

Area treated (ha) of the 20 most used active substances on all grass and fodder crops surveyed

<table>
<thead>
<tr>
<th>Active substance</th>
<th>Type(1)</th>
<th>2017</th>
<th>2013</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fluroxypyr</td>
<td>H</td>
<td>22,742</td>
<td>12,112</td>
<td>88</td>
</tr>
<tr>
<td>2 MCPA</td>
<td>H</td>
<td>20,560</td>
<td>16,765</td>
<td>23</td>
</tr>
<tr>
<td>3 Triclopyr</td>
<td>H</td>
<td>19,831</td>
<td>8,776</td>
<td>126</td>
</tr>
<tr>
<td>4 Clopyralid</td>
<td>H</td>
<td>8,181</td>
<td>3,469</td>
<td>136</td>
</tr>
<tr>
<td>5 Asulam</td>
<td>H</td>
<td>6,028</td>
<td>5,758</td>
<td>5</td>
</tr>
<tr>
<td>6 2,4-D</td>
<td>H</td>
<td>6,150</td>
<td>7,636</td>
<td>-19</td>
</tr>
<tr>
<td>7 Glyphosate</td>
<td>H</td>
<td>6,083</td>
<td>6,857</td>
<td>-11</td>
</tr>
<tr>
<td>8 2,4-DB</td>
<td>H</td>
<td>5,105</td>
<td>9,135</td>
<td>-44</td>
</tr>
<tr>
<td>9 Prothioconazole</td>
<td>F/S</td>
<td>5,026</td>
<td>7,547</td>
<td>-33</td>
</tr>
<tr>
<td>10 Thiram</td>
<td>S</td>
<td>4,585</td>
<td>5,583</td>
<td>-18</td>
</tr>
<tr>
<td>11 Aminopyralid</td>
<td>H</td>
<td>4,436</td>
<td>4,821</td>
<td>-8</td>
</tr>
<tr>
<td>12 Tribenuron-methyl</td>
<td>H</td>
<td>4,322</td>
<td>9,155</td>
<td>-53</td>
</tr>
<tr>
<td>13 Thiamethoxam</td>
<td>S</td>
<td>3,438</td>
<td>3,623</td>
<td>-5</td>
</tr>
<tr>
<td>14 Metazachlor</td>
<td>H</td>
<td>2,392</td>
<td>3,816</td>
<td>-37</td>
</tr>
<tr>
<td>15 Trifloxystrobin</td>
<td>F</td>
<td>2,247</td>
<td>3,257</td>
<td>-31</td>
</tr>
<tr>
<td>16 Chlorothalonil</td>
<td>F</td>
<td>1,851</td>
<td>2,754</td>
<td>-33</td>
</tr>
<tr>
<td>17 Tebuconazole</td>
<td>F/S</td>
<td>1,805</td>
<td>3,129</td>
<td>-42</td>
</tr>
<tr>
<td>18 Dimethenamid-P</td>
<td>H</td>
<td>1,304</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19 Dicamba</td>
<td>H</td>
<td>1,214</td>
<td>3,323</td>
<td>-63</td>
</tr>
<tr>
<td>20 Fluoxastrobin</td>
<td>F</td>
<td>1,171</td>
<td>2,036</td>
<td>-43</td>
</tr>
</tbody>
</table>

(1) Pesticide type = F: Fungicide, H: Herbicide, S: Seed treatment

Table 15 Principal active substances by weight

Weight (kg) of the 20 most used active substances on all grass and fodder crops surveyed

<table>
<thead>
<tr>
<th>Active substance</th>
<th>Type(1)</th>
<th>2017</th>
<th>2013</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MCPA</td>
<td>H</td>
<td>26,536</td>
<td>19,764</td>
<td>34</td>
</tr>
<tr>
<td>2 Asulam</td>
<td>H</td>
<td>24,817</td>
<td>24,885</td>
<td><0.5</td>
</tr>
<tr>
<td>3 Glyphosate</td>
<td>H</td>
<td>8,319</td>
<td>10,785</td>
<td>-23</td>
</tr>
<tr>
<td>4 2,4-D</td>
<td>H</td>
<td>5,934</td>
<td>9,517</td>
<td>-38</td>
</tr>
<tr>
<td>5 Triclopyr</td>
<td>H</td>
<td>5,872</td>
<td>2,219</td>
<td>165</td>
</tr>
<tr>
<td>6 2,4-DB</td>
<td>H</td>
<td>5,678</td>
<td>10,695</td>
<td>-47</td>
</tr>
<tr>
<td>7 Fluroxypyr</td>
<td>H</td>
<td>5,646</td>
<td>2,478</td>
<td>128</td>
</tr>
<tr>
<td>8 Clopyralid</td>
<td>H</td>
<td>1,236</td>
<td>492</td>
<td>151</td>
</tr>
<tr>
<td>9 Metamitron</td>
<td>H</td>
<td>1,133</td>
<td>499</td>
<td>127</td>
</tr>
<tr>
<td>10 Metazachlor</td>
<td>H</td>
<td>1,100</td>
<td>2,385</td>
<td>-54</td>
</tr>
<tr>
<td>11 Pendimethalin</td>
<td>H</td>
<td>954</td>
<td>1,800</td>
<td>-47</td>
</tr>
<tr>
<td>12 Chlorothalonil</td>
<td>F</td>
<td>867</td>
<td>1,154</td>
<td>-25</td>
</tr>
<tr>
<td>13 Dimethenamid-P</td>
<td>H</td>
<td>599</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14 Chloridazon</td>
<td>H</td>
<td>468</td>
<td>174</td>
<td>170</td>
</tr>
<tr>
<td>15 Prothioconazole</td>
<td>F/S</td>
<td>331</td>
<td>570</td>
<td>-42</td>
</tr>
<tr>
<td>16 Aminopyralid</td>
<td>H</td>
<td>243</td>
<td>251</td>
<td>-3</td>
</tr>
<tr>
<td>17 Chlormequat</td>
<td>G</td>
<td>194</td>
<td>403</td>
<td>-52</td>
</tr>
<tr>
<td>18 Fenpropimorph</td>
<td>F</td>
<td>167</td>
<td>311</td>
<td>-46</td>
</tr>
<tr>
<td>19 Dicamba</td>
<td>H</td>
<td>138</td>
<td>292</td>
<td>-53</td>
</tr>
<tr>
<td>20 Thiram</td>
<td>S</td>
<td>131</td>
<td>167</td>
<td>-21</td>
</tr>
</tbody>
</table>
Table 16 Grassland and rough grazing, comparison with previous years
Pesticide usage in 2009, 2013 and 2017, area treated with formulations, active substances (a.s.) and weight (kg) applied

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th></th>
<th>2013</th>
<th></th>
<th>2017</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulations</td>
<td>a.s.</td>
<td>Weight</td>
<td>Formulations</td>
<td>a.s.</td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>ha</td>
<td>ha</td>
<td>kg</td>
<td>ha</td>
<td>ha</td>
<td>kg</td>
</tr>
<tr>
<td>Insecticides</td>
<td>3,537</td>
<td>3,537</td>
<td>259</td>
<td>5,811</td>
<td>5,811</td>
<td>4,113</td>
</tr>
<tr>
<td>Molluscidides</td>
<td>191</td>
<td>191</td>
<td>54</td>
<td>179</td>
<td>179</td>
<td>27</td>
</tr>
<tr>
<td>Fungicides</td>
<td>39,203</td>
<td>56,471</td>
<td>7,754</td>
<td>12,081</td>
<td>22,127</td>
<td>2,508</td>
</tr>
<tr>
<td>Sulphur</td>
<td>669</td>
<td>669</td>
<td>4,793</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Herbicides</td>
<td>98,378</td>
<td>168,807</td>
<td>112,478</td>
<td>66,602</td>
<td>86,020</td>
<td>78,348</td>
</tr>
<tr>
<td>Growth regulators</td>
<td>624</td>
<td>1,223</td>
<td>162</td>
<td>721</td>
<td>914</td>
<td>270</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>488</td>
<td>488</td>
<td>48</td>
<td>1,490</td>
<td>1,490</td>
<td>53</td>
</tr>
<tr>
<td>All pesticides</td>
<td>142,602</td>
<td>230,898</td>
<td>125,500</td>
<td>86,884</td>
<td>116,541</td>
<td>85,319</td>
</tr>
<tr>
<td>Area grown</td>
<td>4,630,016</td>
<td></td>
<td></td>
<td>4,400,870</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Unspecified treatments have been included in the formulation and active substance areas, however as their weights are unknown they cannot be included in the weight applied.
Table 17 Fodder crops, comparison with previous years

Pesticide usage in 2009, 2013 and 2017, area treated with formulations, active substances (a.s.) and weight (kg) applied

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th></th>
<th></th>
<th>2013</th>
<th></th>
<th></th>
<th>2017</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formulations</td>
<td>a.s.</td>
<td>Weight</td>
<td>Formulations</td>
<td>a.s.</td>
<td>Weight</td>
<td>Formulations</td>
<td>a.s.</td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>ha</td>
<td>ha</td>
<td>kg</td>
<td>ha</td>
<td>ha</td>
<td>kg</td>
<td>ha</td>
<td>ha</td>
<td>kg</td>
</tr>
<tr>
<td>Insecticides</td>
<td>2,591</td>
<td>2,591</td>
<td>261</td>
<td>1,796</td>
<td>1,796</td>
<td>413</td>
<td>897</td>
<td>897</td>
<td>9</td>
</tr>
<tr>
<td>Molluscicides</td>
<td>373</td>
<td>373</td>
<td>42</td>
<td>126</td>
<td>126</td>
<td>25</td>
<td>140</td>
<td>140</td>
<td>26</td>
</tr>
<tr>
<td>Fungicides</td>
<td>3,512</td>
<td>5,819</td>
<td>894</td>
<td>6,030</td>
<td>10,312</td>
<td>1,553</td>
<td>885</td>
<td>1,800</td>
<td>208</td>
</tr>
<tr>
<td>Sulphur</td>
<td>183</td>
<td>183</td>
<td>440</td>
<td>49</td>
<td>49</td>
<td>197</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Herbicides</td>
<td>18,835</td>
<td>26,550</td>
<td>15,871</td>
<td>17,574</td>
<td>23,658</td>
<td>11,769</td>
<td>11,074</td>
<td>15,631</td>
<td>7,647</td>
</tr>
<tr>
<td>Growth Regulators</td>
<td>608</td>
<td>832</td>
<td>71</td>
<td>658</td>
<td>658</td>
<td>228</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Seed treatments</td>
<td>17,025</td>
<td>25,648</td>
<td>785</td>
<td>15,703</td>
<td>19,907</td>
<td>557</td>
<td>11,265</td>
<td>14,020</td>
<td>222</td>
</tr>
<tr>
<td>All pesticides</td>
<td>43,127</td>
<td>61,996</td>
<td>18,364</td>
<td>41,935</td>
<td>56,505</td>
<td>14,740</td>
<td>24,262</td>
<td>32,488</td>
<td>8,111</td>
</tr>
<tr>
<td>Area grown</td>
<td>22,838</td>
<td></td>
<td>19,524</td>
<td></td>
<td>16,304</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Unspecified treatments have been included in the formulation and active substance areas, however as their weights are unknown they cannot be included in the weight applied.
Appendix 2 – Survey statistics

Census and sample information

Table 18
Regional distribution of grassland and rough grazing crop areas in 2017

Census area (ha) of grassland and rough grazing grown in Scotland

<table>
<thead>
<tr>
<th></th>
<th>Highlands & Islands</th>
<th>Caithness & Orkney</th>
<th>Moray Firth</th>
<th>Aberdeen</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass under 5 years</td>
<td>12,957</td>
<td>13,593</td>
<td>18,995</td>
<td>43,037</td>
<td>16,698</td>
<td>5,453</td>
<td>6,546</td>
</tr>
<tr>
<td>Grass over 5 years</td>
<td>212,766</td>
<td>73,288</td>
<td>58,709</td>
<td>98,258</td>
<td>33,103</td>
<td>19,399</td>
<td>23,210</td>
</tr>
<tr>
<td>Rough grazing</td>
<td>2,181,114</td>
<td>76,911</td>
<td>161,429</td>
<td>47,374</td>
<td>39,743</td>
<td>2,735</td>
<td>19,169</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Central Lowlands</th>
<th>Tweed Valley</th>
<th>Southern Uplands</th>
<th>Solway</th>
<th>Scotland 2017</th>
<th>Scotland 2013</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass under 5 years</td>
<td>30,878</td>
<td>17,439</td>
<td>11,459</td>
<td>29,199</td>
<td>206,254</td>
<td>439,061</td>
<td>-53</td>
</tr>
<tr>
<td>Grass over 5 years</td>
<td>242,220</td>
<td>63,081</td>
<td>130,240</td>
<td>158,278</td>
<td>1,112,553</td>
<td>882,165</td>
<td>26</td>
</tr>
<tr>
<td>Rough grazing</td>
<td>137,301</td>
<td>30,507</td>
<td>280,799</td>
<td>60,532</td>
<td>3,037,615</td>
<td>3,064,184</td>
<td>-1</td>
</tr>
</tbody>
</table>
Table 19 Regional distribution of fodder crop areas in 2017

Census area (ha) of fodder crops grown in Scotland

<table>
<thead>
<tr>
<th></th>
<th>Highlands & Islands</th>
<th>Caithness & Orkney</th>
<th>Moray Firth</th>
<th>Aberdeen</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fodder beet</td>
<td>31</td>
<td>*</td>
<td>*</td>
<td>19</td>
<td>*</td>
<td>121</td>
<td>38</td>
</tr>
<tr>
<td>Fodder rape</td>
<td>258</td>
<td>113</td>
<td>324</td>
<td>245</td>
<td>76</td>
<td>29</td>
<td>61</td>
</tr>
<tr>
<td>Kale & cabbage</td>
<td>61</td>
<td>*</td>
<td>229</td>
<td>327</td>
<td>154</td>
<td>92</td>
<td>118</td>
</tr>
<tr>
<td>Turnips & swede</td>
<td>275</td>
<td>132</td>
<td>876</td>
<td>1,524</td>
<td>312</td>
<td>58</td>
<td>67</td>
</tr>
<tr>
<td>Maize</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Other stock-feeding</td>
<td>633</td>
<td>756</td>
<td>601</td>
<td>1,180</td>
<td>411</td>
<td>88</td>
<td>303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Central Lowlands</th>
<th>Tweed Valley</th>
<th>Southern Uplands</th>
<th>Solway</th>
<th>Scotland 2017</th>
<th>Scotland 2013</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fodder beet</td>
<td>98</td>
<td>*</td>
<td>2</td>
<td>141</td>
<td>611</td>
<td>465</td>
<td>32</td>
</tr>
<tr>
<td>Fodder rape</td>
<td>255</td>
<td>234</td>
<td>292</td>
<td>121</td>
<td>2,007</td>
<td>2,102</td>
<td>-5</td>
</tr>
<tr>
<td>Kale & cabbage</td>
<td>230</td>
<td>266</td>
<td>220</td>
<td>200</td>
<td>1,915</td>
<td>1,802</td>
<td>6</td>
</tr>
<tr>
<td>Turnips & swede</td>
<td>221</td>
<td>127</td>
<td>153</td>
<td>63</td>
<td>3,806</td>
<td>4,106</td>
<td>-7</td>
</tr>
<tr>
<td>Maize</td>
<td>84</td>
<td>13</td>
<td>*</td>
<td>*</td>
<td>792</td>
<td>1,406</td>
<td>-44</td>
</tr>
<tr>
<td>Other stock-feeding</td>
<td>839</td>
<td>623</td>
<td>284</td>
<td>1,115</td>
<td>6,834</td>
<td>9,106</td>
<td>-25</td>
</tr>
</tbody>
</table>

*Regional data have not been provided in order to prevent disclosure of information relating to fewer than five holdings
Note: ‘other stock-feeding crops’ include arable silage, red clover, swedes, kale, stubble turnips and fodder crop mixes
Table 20 Distribution of grassland sample - 2017

Number of holdings surveyed in each region and size group

<table>
<thead>
<tr>
<th>Size (ha)</th>
<th>H&I (2)</th>
<th>C&O (2)</th>
<th>Moray Firth</th>
<th>Abdn (2)</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Low-lands</th>
<th>Tweed Valley</th>
<th>S. Uplands (2)</th>
<th>Solway</th>
<th>Scotland</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 - 19.9</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>20.0 - 49.9</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>81</td>
</tr>
<tr>
<td>50.0 - 99.9</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>17</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>25</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td>120</td>
</tr>
<tr>
<td>100.0 - 149.9</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>22</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>92</td>
</tr>
<tr>
<td>150.0 +</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>29</td>
<td>18</td>
<td>25</td>
<td>31</td>
<td>163</td>
</tr>
<tr>
<td>All sizes</td>
<td>76</td>
<td>48</td>
<td>32</td>
<td>63</td>
<td>19</td>
<td>11</td>
<td>8</td>
<td>96</td>
<td>34</td>
<td>47</td>
<td>77</td>
<td>511</td>
</tr>
</tbody>
</table>

(1) Size refers to the area of fodder crops grown on the holding
(2) H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, S. Uplands = Southern Uplands

Table 21 Distribution of fodder sample - 2017

Number of holdings surveyed in each region and size group

<table>
<thead>
<tr>
<th>Size (ha)</th>
<th>H&I (2)</th>
<th>C&O (2)</th>
<th>Moray Firth</th>
<th>Abdn (2)</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Low-lands</th>
<th>Tweed Valley</th>
<th>S. Uplands (2)</th>
<th>Solway</th>
<th>Scotland</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 - 4.9</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>5.0 - 9.9</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>58</td>
</tr>
<tr>
<td>10.0 - 14.9</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>15.0 - 19.9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>20.0 +</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>All sizes</td>
<td>20</td>
<td>13</td>
<td>24</td>
<td>35</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>10</td>
<td>25</td>
<td>183</td>
</tr>
</tbody>
</table>
Table 22 Sampled area of grassland - 2017

Area (ha) of grassland and rough grazing in the sample

<table>
<thead>
<tr>
<th>Area (ha) of grassland</th>
<th>H&I(^{(1)})</th>
<th>C&O(^{(1)})</th>
<th>Moray Firth</th>
<th>Abdn(^{(1)})</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Lowlands</th>
<th>Tweed Valley</th>
<th>S. Uplands(^{(1)})</th>
<th>Solway</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland</td>
<td>9,924</td>
<td>7,655</td>
<td>5,483</td>
<td>9,447</td>
<td>3,788</td>
<td>1,991</td>
<td>2,302</td>
<td>13,113</td>
<td>8,581</td>
<td>12,300</td>
<td>14,199</td>
<td>88,783</td>
</tr>
<tr>
<td>Rough grazing</td>
<td>51,155</td>
<td>5,430</td>
<td>2,535</td>
<td>4,914</td>
<td>2,633</td>
<td>61</td>
<td>853</td>
<td>9,512</td>
<td>2,388</td>
<td>11,634</td>
<td>5,488</td>
<td>96,602</td>
</tr>
</tbody>
</table>

Table 23 Census area of grassland - 2017

Area (ha) of grassland and rough grazing in Scotland

<table>
<thead>
<tr>
<th>Area (ha) of grassland</th>
<th>H&I(^{(1)})</th>
<th>C&O(^{(1)})</th>
<th>Moray Firth</th>
<th>Abdn(^{(1)})</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Lowlands</th>
<th>Tweed Valley</th>
<th>S. Uplands(^{(1)})</th>
<th>Solway</th>
<th>Scotland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland</td>
<td>225,723</td>
<td>86,881</td>
<td>77,704</td>
<td>141,295</td>
<td>49,801</td>
<td>24,852</td>
<td>29,756</td>
<td>273,098</td>
<td>80,520</td>
<td>141,699</td>
<td>187,477</td>
<td>1,318,807</td>
</tr>
<tr>
<td>Rough grazing</td>
<td>2,181,114</td>
<td>76,911</td>
<td>161,429</td>
<td>47,374</td>
<td>39,743</td>
<td>2,735</td>
<td>19,169</td>
<td>137,301</td>
<td>30,507</td>
<td>280,799</td>
<td>60,532</td>
<td>3,037,615</td>
</tr>
</tbody>
</table>

\(^{(1)}\) H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, S. Uplands = Southern Uplands

\(^{(2)}\) These areas do not include the estimated 7,563 hectares of undersown grass as this is not recorded on the census (refer to Appendix 3)

Note: Data taken from the 2017 June Agricultural Census
Table 24 Sampled area of fodder crops - 2017

Area (ha) of fodder crops grown in the sample

<table>
<thead>
<tr>
<th>Size (ha)</th>
<th>H&I (1)</th>
<th>C&O (2)</th>
<th>Moray Firth</th>
<th>Abdn (2)</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Low-lands</th>
<th>Tweed Valley</th>
<th>S. Uplands (2)</th>
<th>Solway</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 - 4.9</td>
<td>11</td>
<td>12</td>
<td>19</td>
<td>27</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>7</td>
<td>107</td>
</tr>
<tr>
<td>5.0 - 9.9</td>
<td>48</td>
<td>32</td>
<td>67</td>
<td>103</td>
<td>40</td>
<td>46</td>
<td>14</td>
<td>44</td>
<td>25</td>
<td>44</td>
<td>27</td>
<td>491</td>
</tr>
<tr>
<td>10.0 - 14.9</td>
<td>25</td>
<td>25</td>
<td>43</td>
<td>61</td>
<td>33</td>
<td>13</td>
<td>23</td>
<td>52</td>
<td>43</td>
<td>37</td>
<td>71</td>
<td>425</td>
</tr>
<tr>
<td>15.0 - 19.9</td>
<td>35</td>
<td>32</td>
<td>26</td>
<td>69</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>59</td>
<td>55</td>
<td>6</td>
<td>115</td>
<td>411</td>
</tr>
<tr>
<td>20.0 +</td>
<td>66</td>
<td>0</td>
<td>113</td>
<td>65</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>68</td>
<td>19</td>
<td>153</td>
<td>21</td>
<td>766</td>
</tr>
<tr>
<td>All sizes</td>
<td>185</td>
<td>101</td>
<td>268</td>
<td>324</td>
<td>49</td>
<td>0</td>
<td>109</td>
<td>181</td>
<td>281</td>
<td>113</td>
<td>432</td>
<td>2,200</td>
</tr>
</tbody>
</table>

(1) Size refers to the area of fodder crops grown on the holding
(2) H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, S. Uplands = Southern Uplands
Table 25 Census area of fodder crops - 2017

Area (ha) of fodder crops grown in Scotland

<table>
<thead>
<tr>
<th>Size (1) (ha)</th>
<th>H&I (2)</th>
<th>C&O (2)</th>
<th>Moray Firth</th>
<th>Abdn (2)</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Lowlands</th>
<th>Tweed Valley</th>
<th>S. Uplands (2)</th>
<th>Solway</th>
<th>Scotland (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 - 4.9</td>
<td>419</td>
<td>339</td>
<td>509</td>
<td>887</td>
<td>172</td>
<td>79</td>
<td>42</td>
<td>309</td>
<td>144</td>
<td>105</td>
<td>161</td>
<td>3,165</td>
</tr>
<tr>
<td>5.0 - 9.9</td>
<td>308</td>
<td>408</td>
<td>538</td>
<td>1,040</td>
<td>392</td>
<td>167</td>
<td>116</td>
<td>553</td>
<td>270</td>
<td>304</td>
<td>513</td>
<td>4,611</td>
</tr>
<tr>
<td>10.0 - 14.9</td>
<td>272</td>
<td>99</td>
<td>354</td>
<td>520</td>
<td>211</td>
<td>82</td>
<td>113</td>
<td>351</td>
<td>347</td>
<td>132</td>
<td>564</td>
<td>3,047</td>
</tr>
<tr>
<td>15.0 - 19.9</td>
<td>106</td>
<td>65</td>
<td>216</td>
<td>323</td>
<td>50</td>
<td>49</td>
<td>17</td>
<td>208</td>
<td>256</td>
<td>245</td>
<td>323</td>
<td>1,856</td>
</tr>
<tr>
<td>20.0 +</td>
<td>165</td>
<td>106</td>
<td>456</td>
<td>526</td>
<td>246</td>
<td>21</td>
<td>299</td>
<td>306</td>
<td>303</td>
<td>179</td>
<td>680</td>
<td>3,286</td>
</tr>
<tr>
<td>All sizes</td>
<td>1,270</td>
<td>1,017</td>
<td>2,073</td>
<td>3,296</td>
<td>1,071</td>
<td>398</td>
<td>587</td>
<td>1,727</td>
<td>1,320</td>
<td>964</td>
<td>2,241</td>
<td>15,965</td>
</tr>
</tbody>
</table>

(1) Size refers to the area of fodder crops grown on the holding
(2) H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, S. Uplands = Southern Uplands
(3) These areas do not include the estimated 339 hectares of stubble turnips as this is not recorded on the census (refer to Appendix 3)
Note: Data taken from the 2017 June Agricultural Census

Table 26 Raising factors for grassland - 2017

<table>
<thead>
<tr>
<th></th>
<th>H&I (1)</th>
<th>C&O (1)</th>
<th>Moray Firth</th>
<th>Abdn (1)</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Lowlands</th>
<th>Tweed Valley</th>
<th>S. Uplands (1)</th>
<th>Solway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough grazing</td>
<td>42.64</td>
<td>14.16</td>
<td>63.68</td>
<td>9.64</td>
<td>15.09</td>
<td>44.51</td>
<td>22.48</td>
<td>14.43</td>
<td>12.77</td>
<td>24.14</td>
<td>11.03</td>
</tr>
</tbody>
</table>

(1) H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, S. Uplands = Southern Uplands
Note: Raising factors are calculated by comparing the sampled crop area to the census crop area. Please see Appendix 4 – survey methodology for a full explanation
Table 27 Raising factors for fodder crops- 2017

<table>
<thead>
<tr>
<th></th>
<th>H&I<sup>(1)</sup></th>
<th>C&O<sup>(1)</sup></th>
<th>Moray Firth</th>
<th>Abdn<sup>(1)</sup></th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Low-lands</th>
<th>Tweed Valley</th>
<th>S. Uplands<sup>(1)</sup></th>
<th>Solway</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 - 4.9</td>
<td>36.50</td>
<td>27.80</td>
<td>27.42</td>
<td>33.27</td>
<td>35.09</td>
<td>16.05</td>
<td>8.77</td>
<td>47.22</td>
<td>29.51</td>
<td>23.30</td>
<td>22.25</td>
</tr>
<tr>
<td>5.0 - 9.9</td>
<td>6.46</td>
<td>12.63</td>
<td>7.97</td>
<td>10.09</td>
<td>9.75</td>
<td>3.61</td>
<td>8.46</td>
<td>12.52</td>
<td>10.97</td>
<td>6.90</td>
<td>18.78</td>
</tr>
<tr>
<td>10.0 - 14.9</td>
<td>10.85</td>
<td>4.02</td>
<td>8.30</td>
<td>8.59</td>
<td>6.35</td>
<td>6.22</td>
<td>5.01</td>
<td>6.72</td>
<td>8.11</td>
<td>3.59</td>
<td>7.94</td>
</tr>
<tr>
<td>15.0 - 19.9</td>
<td>2.99</td>
<td>2.01</td>
<td>4.04</td>
<td>4.71</td>
<td>3.94</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.52</td>
<td>4.64</td>
<td>40.39</td>
</tr>
<tr>
<td>20.0 +</td>
<td>2.52</td>
<td>N/A</td>
<td>7.73</td>
<td>8.03</td>
<td>5.02</td>
<td>N/A</td>
<td>4.38</td>
<td>15.84</td>
<td>1.98</td>
<td>8.45</td>
<td>3.22</td>
</tr>
</tbody>
</table>

⁽¹⁾ H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, S. Uplands = Southern Uplands

N/A = not applicable

Note: Raising factors are calculated by comparing the sampled crop area to the census crop area. Please see Appendix 4 – survey methodology for a full explanation.
Table 28 First and second adjustment factors - 2017

<table>
<thead>
<tr>
<th></th>
<th>H&I (1)</th>
<th>C&O (1)</th>
<th>Moray Firth</th>
<th>Abdn (1)</th>
<th>Angus</th>
<th>East Fife</th>
<th>Lothian</th>
<th>Central Low-lands</th>
<th>Tweed Valley</th>
<th>S. Uplands (1)</th>
<th>Solway</th>
<th>Adj 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass under 5 years</td>
<td>0.60</td>
<td>0.80</td>
<td>0.97</td>
<td>0.92</td>
<td>1.28</td>
<td>0.78</td>
<td>0.59</td>
<td>1.16</td>
<td>0.96</td>
<td>0.66</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>Grass over 5 years</td>
<td>1.03</td>
<td>1.02</td>
<td>0.96</td>
<td>1.00</td>
<td>0.88</td>
<td>1.07</td>
<td>1.21</td>
<td>0.97</td>
<td>0.98</td>
<td>1.03</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Rough grazing</td>
<td>1.00</td>
</tr>
<tr>
<td>Fodder rape</td>
<td>0.57</td>
<td>1.72</td>
<td>0.77</td>
<td>0.43</td>
<td>0.92</td>
<td>N/A</td>
<td>1.45</td>
<td>1.10</td>
<td>0.73</td>
<td>2.57</td>
<td>2.99</td>
<td>1.01</td>
</tr>
<tr>
<td>Fodder beet</td>
<td>0.93</td>
<td>N/A</td>
<td>N/A</td>
<td>0.65</td>
<td>N/A</td>
<td>1.07</td>
<td>N/A</td>
<td>0.55</td>
<td>N/A</td>
<td>N/A</td>
<td>2.15</td>
<td>1.49</td>
</tr>
<tr>
<td>Kale and cabbage</td>
<td>0.34</td>
<td>0.29</td>
<td>0.98</td>
<td>1.49</td>
<td>1.13</td>
<td>N/A</td>
<td>0.56</td>
<td>0.62</td>
<td>1.00</td>
<td>0.92</td>
<td>2.06</td>
<td>1.05</td>
</tr>
<tr>
<td>Maize</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.61</td>
<td>N/A</td>
<td>N/A</td>
<td>0.86</td>
<td>1.16</td>
</tr>
<tr>
<td>Turnip and Swedes</td>
<td>2.67</td>
<td>0.94</td>
<td>0.66</td>
<td>1.07</td>
<td>0.84</td>
<td>0.73</td>
<td>1.56</td>
<td>0.45</td>
<td>1.00</td>
<td>2.68</td>
<td>0.51</td>
<td>1.00</td>
</tr>
<tr>
<td>Other Fodder</td>
<td>1.26</td>
<td>1.17</td>
<td>1.81</td>
<td>1.24</td>
<td>0.88</td>
<td>0.77</td>
<td>1.10</td>
<td>2.66</td>
<td>1.03</td>
<td>0.51</td>
<td>0.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(1) H&I = Highlands & Islands, C&O = Caithness & Orkney, Abdn = Aberdeen, S. Uplands = Southern Uplands
N/A = not applicable
Response rates

The table below summarises the number of holdings who were contacted during the survey.

Table 29 Response rate - Grassland postal survey

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>% total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target sample (no. of forms sent out)</td>
<td>1,335</td>
<td>100</td>
</tr>
<tr>
<td>Total achieved (no. of returns)</td>
<td>511</td>
<td>38</td>
</tr>
<tr>
<td>Total number of non-returns</td>
<td>824</td>
<td></td>
</tr>
<tr>
<td>Total number of farms approached</td>
<td>1,335</td>
<td></td>
</tr>
</tbody>
</table>

Table 30 Response rate - Fodder

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>% total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target sample</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Total achieved</td>
<td>183</td>
<td>92</td>
</tr>
<tr>
<td>Total number of refusals/non-contact</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Total number of farms approached</td>
<td>283</td>
<td></td>
</tr>
</tbody>
</table>
Financial burden to farmers

In order to minimise the burden on farmers, the survey team used non-visit methods of collection such as email, post or telephone call, where possible.

The grassland survey was carried out by postal questionnaire, so required no visits and very few telephone calls. The fodder survey was carried out by telephone and email without any visits.

All respondents to the grassland postal survey were asked how long it had taken for them to fill out the survey form. Out of 511 respondents, 461 provided this information (90 per cent). The median time taken to provide the information for the grassland survey was 10 minutes.

The time taken to provide the data requested was recorded for 176 respondents to the fodder survey (96 per cent). The median time taken to provide information for the fodder survey was 10 minutes.

The following formula was used to estimate the cost of participating:
\[
\text{Burden (\pounds)} = \text{No. surveyed} \times \text{median time taken (hours)} \times \text{typical hourly rate}\ *
\]
(* using median “Full Time Gross” hourly pay for Scotland of £13.98) (12)

The total financial burden, accounting for all farmers’ participation in the 2017 grassland survey was £1074 and for the fodder survey was £410. Therefore, the overall financial burden to growers for 2017 survey participation was £1484
Appendix 3 - Definitions and notes

1) ‘Pesticide’ is used throughout this report to include commercial formulations containing active substances (a.s.) used as herbicides, fungicides, insecticides, molluscicides, biological control agents, biopesticides, growth regulators, seed treatments and physical control. A pesticide product consists of one or more active substances co-formulated with other materials.

2) An active substance (or active ingredient) is any substance or micro-organism which has a general or specific action: against harmful organisms; or on plants, parts of plants or plant products.

3) In this report the term ‘formulation(s)’ is used to describe the pesticide active substance or mixture of active substances in a product(s). It does not refer to any of the solvents, pH modifiers or adjuvants also contained within a product that contribute to its efficacy.

4) A fungicide is a pesticide used to control fungal diseases in plants.

5) A herbicide is a pesticide used to control unwanted vegetation (weed killer).

6) A growth regulator is a pesticide used to regulate the growth of the plant, for example to prevent the crop from growing too tall.

7) An insecticide is a pesticide used to control unwanted insects.

8) A molluscicide is a pesticide used to control unwanted slugs and snails.

9) A seed treatment is a pesticide applied to seed before planting to protect that plant against diseases and pests from the earliest stage of development. The pesticide can be a fungicide, an insecticide or a biological control agent.

10) Basic area is the planted area of crop which was treated with a given pesticide or pesticide group, irrespective of the number of times it was applied to that area. Basic areas are not presented anywhere in the report, but their values are used to calculate the percentage of crop treated with a given pesticide or pesticide group.

11) Area treated is the basic area of a crop treated with a given pesticide multiplied by the number of treatments that area received. These terms are synonymous with “spray area” and “spray hectare” which have appeared in previous reports. For example, if a field of five hectares gets sprayed with the same fungicide twice, the basic area is five hectares, and the treated area is 10 hectares.

12) Farmers/growers can apply pesticides to crops by a number of different methods. Multiple pesticides can be applied to a crop in a single tank mix. For example a crop could be sprayed with two different fungicides and an insecticide at the same time.
13) In this report data are reported in two formats. For each pesticide formulation (mixture of active substances in a product) the area treated and weight applied is reported (Tables 2 to 9). Areas and weights for individual active substances are not included in this report but are published in Excel format as supplementary tables. These different formats are provided to satisfy the needs of all data users and allow them to assess pesticide use trends. Some users may be interested in use of pesticide products which contain a number of active substances, thus formulation data would be required. Other users are interested in particular active substances which may be formulated on their own or in combination with other active substances. In addition, both weight and area of pesticide applications are important indicators of changes in use over time. Different pesticides are applied at different dose rates and only by comparing both area and weight can trends in use be elucidated.

14) It should be noted that some herbicides may not have been applied directly to the crop itself but either as land preparation treatments prior to sowing/planting the crop, or to control weeds at the field margins.

15) The June Agricultural Census is conducted annually by the Scottish Government's Rural and Environmental Science Analytical Services (RESAS). The June Agricultural Census collects data on land use, crop areas, livestock and the number of people working on agricultural holdings. For this report the June Agricultural Census was used to draw a sample of farmers growing the relevant crops to participate in the survey.

16) Throughout this report the term ‘census area’ refers to the total area for a particular crop or group of crops recorded within the June Agricultural Census. These are the areas which the sampled areas are raised to. Please see Appendix 4 – survey methodology for details. The June Agricultural Census Form is divided up into different categories which relates to a particular crop or group of crops. These are referred to as ‘census categories’ throughout this report.

17) The census category ‘grass under five years old’ includes the survey categories ‘direct sown grass’ and ‘grass one to four years old’. For this survey, direct sown grass is grass that has been sown either in autumn 2016 or spring 2017 without a nurse crop. **Undersown grass** is grass that has been sown with a nurse crop, to aid establishment of the grass. As undersown grass is not included in the ‘grass under five years old’ census category, the area grown is estimated by multiplying the area encountered in the sample by the grassland raising factors. **Rough grazing** is uncultivated grazing land, such as mountain, hill or moor. Where ‘grassland’ is stated in the text, this refers to all grass under five years and grass over five years. It does not include rough grazing.

18) **Stubble turnips** are not included in the fodder crop census category; the area grown is estimated by multiplying the area encountered in the sample by the fodder crop raising factors.
19) ‘Other fodder’ consists of any crops other than arable silage, reported in the ‘other stock crops for stock-feeding’ category. In 2017 this includes red clover, swedes, kale, stubble turnips and fodder crop mixes.

20) Where quoted in the text, reasons for application are the grower’s stated reasons for use of that particular pesticide on that crop and may not always seem appropriate.

21) Due to rounding, there may be slight differences in totals both within and between tables.

22) Data from the 2009(4) and 2013(3) surveys are provided for comparison purposes in some of the tables, although it should be noted that there may be minor differences in the range of crops surveyed, together with changes in areas of each of the crops grown. Changes from previous surveys are described in Appendix 4. When comparisons are made between surveys it is important to take into account that there may be changes in the area of crop grown. In order to take this into account, comparisons have been made on a per hectare grown basis, i.e. the number of hectares that have been sprayed (treated hectares) has been divided by the area of crop grown for each survey, and the weight (kilograms) applied has also been divided by the area of crop grown. This is to enable like for like comparisons between surveys, so that changes in pesticide use patterns are not masked by changes in crop area.

23) The average number of applications indicated in the text for each crop is based on the occurrence of a chemical group on at least ten per cent of the area grown. The average number of applications is calculated only on the areas using each pesticide group and therefore the minimum number of applications is always going to be one. Several pesticides may be applied as a tank mix as part of the same spray event; therefore the average number of pesticide sprays reported is less than the sum of sprays of each chemical group.

24) In the pesticide tables, some pesticide treatments may be reported as ‘unspecified’. This description was used for occasions where the use of a particular treatment was reported by the farmer, but they were unable to provide details of the product used. For these treatments, we are able to provide an area treated but no weight of pesticide used since the exact pesticide is unknown.

25) Some seed treatments were recorded as ‘no information seed treatment’. This description was used for occasions where the grower was unable to confirm whether the seed had received a treatment.

26) Integrated pest management The sustainable use directive(13) defines IPM as; “integrated pest management’ means careful consideration of all available plant protection methods and subsequent integration of appropriate measures that discourage the development of populations of harmful organisms and keep the use of plant protection products and other forms of intervention to levels that are economically and ecologically justified and
reduce or minimise risks to human health and the environment. ‘Integrated pest management' emphasises the growth of a healthy crop with the least possible disruption to agro-ecosystems and encourages natural pest control mechanisms."

Appendix 4 – Survey methodology

Sampling and data collection

Using the June 2017 Agricultural Census (Tables 23 & 25), two samples were drawn. The first sample was taken from holdings with grassland (Table 20), the second from holdings growing fodder crops (Table 21). For the purpose of sampling, the country was divided into 11 land–use regions (Figure 37). The sample was stratified by these regions and also according to holding size. The holding size groups were different for grassland and fodder crops (Table 20 & 21) and were based on the total areas of crops grown on the holding. Holdings were chosen at random within each of these strata, with the numbers of holdings selected being proportional to the total area of crops grown. Sample sizes for each stratum were based on area rather than number of holdings, so that smaller holdings did not dominate the sample.

The survey period for pesticide applications to grassland was from August 2016 to August 2017. For fodder crops, the survey period covered pesticide applications during the 2017 growing season, including any post-harvest applications following the 2016 harvest through to the end of harvest in 2017. As well as recording treatments applied directly to the crop, land preparation treatments prior to sowing the crop were also collected.

For holdings in the fodder sample, an introductory letter was sent to farmers followed up by a telephone call. The majority of information was gathered during this telephone call, although some holdings required a subsequent telephone call or email. When necessary, data were also collected from consultant agronomists, contractors and seed merchants. In addition to information about fodder crops, pesticide use data were also collected for grassland crops grown on holdings selected in the fodder sample. In total, data were collected from 183 fodder holdings. These 183 holdings collectively grew 14 per cent of the census fodder area. Details of the distribution of the fodder sample can be found in Table 21.

Postal questionnaires were sent to holdings selected in the grassland sample. This postal survey supplemented the grassland data collected during the fodder survey. This combined dataset ensures that the proportionately large areas of grassland grown in Scotland are adequately represented in the survey. Of 1,335 questionnaires sent out there were 511 (38 per cent) useable responses (Table 29). Details of the distribution of the grassland sample can be found in Table 20. The grassland sample represented seven per cent of the total grassland grown in Scotland and three per cent of the total rough grazing.

For both samples, the data collected included the area of grassland and/or fodder crops grown, selected agronomic information and a record of the area and weight of all pesticide applications. Holdings that were not able or not
willing to provide data were replaced with alternative holdings from the same region and size group.

Raising factors

National pesticide use was estimated by ratio raising. This is a standard statistical technique for producing estimates from a sample. It is the same methodology used by the other UK survey teams and has been used for all historical datasets produced by the Pesticide Survey Unit, allowing comparability over time. The sample data were multiplied by raising factors (Tables 26 & 27). These factors were calculated by comparing the sampled area to the areas recorded in the 2017 Agricultural Census within each region and size group. Grassland is raised only by region, size groups are not taken into account. An adjustment (Table 28) was made for each crop within each region by applying the raising factors to the sample area of each crop grown and comparing this with the census area. This adjustment modifies the estimate to take into account differences in composition of crops encountered in the sample and those present in the population. A second adjustment was necessary for some crops which were present in the population, but were not encountered in the sample in some strata.

Changes from previous years

There are a number of changes which should be noted when comparing the 2017 data with the previous surveys.

In 2015 there was a change in the census definition of temporary and permanent grass on the Single Application Form (SAF). This change is explained in clause 4.8 of the 2017 Scottish agriculture census\(^{(11)}\). From 2015, temporary grass relates to whether it has been reseeded in the last five years, whereas previously it related to how long it had been used for grass. The new definition only includes land that is included in a holding’s crop rotation. This means changes in grass one to four years and grass over five years between 2013 and subsequent surveys do not solely represent genuine changes in land use, but include differences in the way crop data has been recorded. As sampled areas are raised to census areas this will also influence our estimates of pesticides used. Whilst it is not possible to quantify the impact of these changes, data users should be aware of them when making comparisons of total pesticide use over time. To aid interpretation, the trends section presents pesticide usage information in relation to crop area grown as well as overall estimates of use.

The term ‘active substance’ is now used instead of ‘active ingredient’ which appeared in previous reports.

Data relating to the average number of applications for each crop and type of pesticide have been included in Table 1.

The areas treated with individual active substances are no longer included at crop level in this report. These data are now published separately as supplementary tables in Excel format to allow continued user access to the full
dataset. In this report, the areas treated and weights of pesticide formulations (mixture of active substances in a product) by crop are presented in Tables 2-9 and summary active substance data are presented in Tables 11 to 15. The aim of this change is to focus on the key metrics at crop level and reduce the size of the published report. This approach is consistent with the output from the other UK pesticide survey teams.

Details relating to pesticide application timings for each crop have been included in the pesticide usage section. Fungicides, herbicides and insecticides have been classified into groups according to their mode of action and chemical group in Tables 11-13.

Data on Integrated Pest Management activities (e.g. non-chemical methods to control pests, weeds and diseases) have been collected from the farmers surveyed as part of the fodder survey and are reported in Appendix 6.

Data quality assurance

The dataset undergoes several validation processes as follows; (i) checking for any obvious errors upon data receipt (ii) checking and identifying inconsistencies with use and pesticide approval conditions once entered into the database (iii) 100 per cent checking of data held in the database against the raw data. Where inconsistencies are found these are checked against the records and with the grower if necessary. Additional quality assurance is provided by sending reports for review to members of the Working Party on Pesticide Usage Surveys and other agricultural experts. In addition, the Scottish pesticide survey unit is accredited to ISO 9001:2008. All survey related processes are documented in Standard Operating Procedures (SOPs) and our output is audited against these SOPs by internal auditors annually and by external auditors every three years.

Main sources of bias

The use of a random stratified sample is an appropriate survey methodology. A stratified random sample, grouped by farm size and region, is used to select holdings used in this survey. Sampling within size groups is based on area rather than numbers of holdings, so that smaller size groups are not over-represented in the sample. The pesticide survey may be subject to measurement bias as it is reliant on farmers/growers recording data accurately. As this survey is not compulsory it may also be subject to non-response bias, as growers on certain farm/holding types may be more likely to respond to the survey than others. Reserve lists of holdings are held for each stratum to allow non-responding holdings to be replaced with similar holdings.

Experience indicates that stratified random sampling, including reserves, coupled with personal interview technique, delivers the highest quality data and minimises non-response bias.
Figure 37 Land use regions of Scotland\(^{(14)}\)
Appendix 5 – Standard errors

The figures presented in this report are produced from surveying a sample of holdings rather than a census of all the holdings in Scotland. Therefore the figures are estimates of the total pesticide use for Scotland and should not be interpreted as exact. To give an idea of the precision of estimates, the report includes relative standard errors (RSE) (Table 31). Standard errors are produced using the raising factors. An overall variance was calculated by summing the variance estimates for individual strata (region and size groups) multiplied by the square of their raising factors. These variance estimates include a finite population correction. The overall standard error is calculated from the overall variance by taking its square root. This method of standard estimation was implemented as it is both relatively straightforward and has advantages over ratio estimator methods when within-strata sample sizes are small.

Standard errors are expressed as percentage relative standard errors (Table 31) for both total pesticide use by area treated and for weight applied. Larger relative standard errors mean that the estimates are less precise. A relative standard error of 0 per cent would be achieved by a census. A relative standard error of 100 per cent indicates that the error in the survey is of the same order as the measurement. Relative standard errors may be reduced with larger sample sizes. However, larger relative standard errors can also result from greater variability in pesticides among holdings.

The RSE for estimates of total pesticide use on grassland crops (Table 31) was nine per cent for area and ten per cent for weight. The RSE for total pesticide use for fodder crops was eight per cent for area and 15 per cent for weight. Rough grazing estimates have a particularly high RSE (64 per cent for area and 67 per cent for weight) due to the very low pesticide use on this type of grassland. Total estimates of pesticide use for fodder and grassland have lower standard errors than those for their constituent crops as sample sizes are greater.
Table 31 Relative standard errors

Relative standard errors (RSE) for the area treated (ha) with pesticide and for weight of active substance (kg) applied

<table>
<thead>
<tr>
<th>Crop Category</th>
<th>Area SE (%)</th>
<th>Weight SE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass Over 5yrs Old</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Grass Under 5yrs Old</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>All Grassland</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Rough Grazing</td>
<td>64</td>
<td>67</td>
</tr>
<tr>
<td>Fodder Beet(^{(1)})</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Fodder Rape</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>Kale and Cabbage(^{(1)})</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Maize</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>Turnips and Swedes</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Other Stock-feeding Crops(^{(2)})</td>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>All Fodder</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

(1) For these crops standard errors could not be calculated for all strata due to insufficient data in the sample, as these strata have not been used in the aggregate totals for the region and the overall RSE values should be treated with caution.

(2) Other stock-feeding crops include arable silage as well as other fodder crops (red clover, swedes, kale, stubble turnips and fodder crop mixes) all recorded under ‘other stock-feeding crops’ in the June 2017 Agricultural Census.
Appendix 6 – Integrated pest management

It is a requirement of the EU Sustainable use of Pesticides Directive (2009/128/EC) that member states should promote low pesticide input pest management, in particular Integrated Pest Management (IPM).

The Directive defines IPM as follows: “integrated pest management’ means careful consideration of all available plant protection methods and subsequent integration of appropriate measures that discourage the development of populations of harmful organisms and keep the use of plant protection products and other forms of intervention to levels that are economically and ecologically justified and reduce or minimise risks to human health and the environment. ‘Integrated pest management’ emphasises the growth of a healthy crop with the least possible disruption to agro-ecosystems and encourages natural pest control mechanisms.”

Information about the uptake of IPM measures by Scottish growers was collected alongside the 2017 grass and fodder crop pesticide usage survey. Similar data have been collected for other crop groups in previous years (vegetable crops 2015, protected edible crops 2015, arable crops 2016 and soft fruit crops 2016). In future, we intend to survey IPM uptake in each crop sector every four years. This monitoring programme is designed to describe adoption of IPM techniques in the main crop sectors and inform the Scottish Government of trends in uptake over time. These data can be used as an indicator of the success of Scottish Government funded IPM research, knowledge transfer and promotion activities.

It should be noted that in the main pesticide usage survey two samples are drawn, one based on holdings cultivating fodder crops (from which data are collected by personal interview) and another of holdings cultivating grass (from which data are collected by postal form, Appendix 4). These dual samples ensure that both fodder crops and Scotland’s large grass area are adequately represented in the sample. The IPM data presented here were collected only from the fodder proportion of the sample. This reflects that this data collection is more suited to personal interview than postal return and it ensures methodological consistency with previous IPM surveys. The fodder holdings surveyed also cultivated grass and the survey covers the IPM measures implemented on all grass and fodder production on those farms. Unlike the other statistics in this report, the figures reported in this section are not raised to produce national estimates, but represent only the responses of those surveyed. The IPM sample, whilst smaller than that sampled for the pesticide usage survey, represents all Scottish regions and farm size groups.

In total, IPM data was collected from 119 farmers, collectively growing 18,711 ha of crops (17,408 ha grass, 1,302 ha fodder). This sample represents eight per cent of Scotland’s 2017 fodder crop area (15,965 ha) and 0.4 per cent of the grass area (4,453,540 ha). Of these growers, 95 per cent did not have an IPM plan, three per cent of farmers completed their own IPM plan and two per cent had a plan completed by an agronomist on their behalf. Using an IPM plan helps growers to make the best possible, and most sustainable, use of all available methods for pest control. Whilst
completion of a plan is voluntary, it also helps growers meet their legal obligation to take reasonable precautions to protect human health and the environment when using pesticides.

Figure 38 Percentage of respondents with an IPM plan – 2017

Farmers were asked about their IPM activities in relation to three categories; risk management, pest monitoring and pest control. Information was collected about all activities each grower conducted in relation to these categories and the responses are reported in the following sections. Despite the fact that the majority of growers did not complete an IPM plan, uptake of a wide range of IPM activities was encountered. The term ‘pest’ is used throughout to denote diseases, weeds and invertebrate pests.

Risk management

IPM programmes aim to prevent, or reduce, the risk of pests becoming a threat by minimising the likelihood of damage occurring that will require subsequent control. Table 32 presents an overview of the risk management measures adopted by those growers surveyed. Almost all of the growers sampled (97 per cent) reported that they implemented at least one risk management activity.

Sixty five per cent of growers used crop rotation to reduce the risk of pest damage. Rotation breaks the link between pest and host, reducing pest population build-up. It can also improve soil fertility and structure, and consequently crop vigour.
Table 32 Summary of responses to IPM risk management questions

<table>
<thead>
<tr>
<th>Risk management activity</th>
<th>Percentage positive response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop rotation</td>
<td>65</td>
</tr>
<tr>
<td>Soil testing</td>
<td>84</td>
</tr>
<tr>
<td>Cultivation of seed bed</td>
<td>82</td>
</tr>
<tr>
<td>Cultivations at sowing</td>
<td>48</td>
</tr>
<tr>
<td>Varietal or seed choice</td>
<td>51</td>
</tr>
<tr>
<td>Catch and cover cropping</td>
<td>9</td>
</tr>
<tr>
<td>Protection or enhancement of beneficial organism populations</td>
<td>57</td>
</tr>
<tr>
<td>Any risk management activity</td>
<td>97</td>
</tr>
</tbody>
</table>

The majority of growers (84 per cent) tested their soil in order to tailor inputs to improve crop performance (Table 32, Figure 39). By testing for nutritional and pest status, farmers’ can make informed decisions about the inputs required and optimal crop choice for their land. Most testing encountered was for soil nutrients (76 per cent) and soil pH and/or lime requirements (soil buffering capacity) (19 per cent). Lower proportions of growers tested for soil pests such as nematodes, leatherjackets and wheat bulb fly (three, three and one per cent respectively) or soil-borne disease (clubroot, one per cent). Soil mapping and testing for earthworm activity were also each reported by one per cent of growers.

Figure 39 IPM: Soil testing - 2017

![Soil testing chart](chart.png)

Note: 'other' includes soil mapping and testing for worm activity
The majority of growers (82 per cent) also reported that they managed their seed bed agronomy to improve crop performance and reduce pest risk (Table 32, Figure 40). Sixty one per cent increased soil organic matter. Eight per cent of growers used non-inversion tillage (primarily min till, with one report of strip tillage) and 10 per cent used direct drilling. Non-inversion techniques can preserve soil moisture and organic matter and reduce compaction and erosion. There is also evidence that it is beneficial for populations of earth worms and predatory ground beetles. Nineteen per cent employed rotational ploughing between periods of non-inversion cultivation; rotational ploughing can reduce weed burden and is also used to incorporate organic matter.

Six per cent of growers employed a stale seedbed technique for weed management. Stale seed beds allow weeds to germinate before sowing the next crop, these are treated with a herbicide, depleting the seed bank and resulting in lower weed pressure, and potentially pesticide use, in the succeeding crop. In addition, six per cent of growers reported other seed bed cultivations to improve crop performance, these included using mechanical methods such as disc harrowing, ploughing and rolling to attempt to reduce slug populations, rolling to combat leatherjacket larvae and application of lime to improve soil quality and crop health.

![Figure 40 - IPM: Seed bed cultivations - 2017](image)

Forty eight per cent of growers amended cultivation methods at sowing with the aim of increasing crop success (Table 32, Figure 41). Thirty four per cent under sowed with a secondary crop. Under sowing can increase soil fertility (when under sown with a nitrogen fixing crop), suppress weeds and provide a host for wildlife. Thirteen per cent varied the timing of sowing to reduce the risk from a range of pests; flea beetles, leatherjackets, pigeons, geese and weeds were all cited as reasons for changes in sowing date.
Some growers (10%) also increased sowing density to mitigate for damage from insect pests (flea beetle and leatherjackets), decrease competition from weeds or in order to improve crop establishment generally. One grower (one per cent of sample) reported that they increased sowing depth to decrease seed loss to pigeons.

Figure 41 IPM: Cultivations at sowing - 2017

Just over half (51 per cent) of growers reported that they considered risk management when selecting seeds and/or varieties (Table 32, Figure 42). Twenty four per cent used certified seed and one per cent tested home saved seed. These actions ensure that seed meets the required quality standards and is pathogen free. Eighteen per cent of farmers selected pest resistant varieties, to reduce damage and the need for pesticide input, and three per cent implemented varietal diversification to increase overall crop resilience to pests and environmental stresses. Twenty two per cent of growers used pesticide seed treatments to protect seedlings at crop emergence.

Only nine per cent of those surveyed sowed cover crops as part of their crop production cycle (Table 32). The cover crops were reported to improve soil quality, by ploughing in as a green manure, and/or to control weeds (seven and five per cent of the sample respectively).

Finally, 57 per cent of growers stated that they adopted techniques to protect or enhance populations of beneficial organisms (Table 32, Figure 43). Thirty one per cent left uncultivated areas, including fallow and grass margins, and five per cent planted wild flower strips. Thirteen per cent took part in an agri-environment scheme; the main scheme reported was the Scottish Government agri-environment climate scheme (AECS) and actions primarily involved cultivation of wild bird seed mixes. A number of additional actions to support beneficial organism populations were also reported, some of which contributed to the Ecological Focus Area (EFA) element of the direct payment.
scheme. These additional measures included; planting and maintaining hedges (six per cent) and woodland (three per cent), planting wild bird seed crops (three per cent) and maintaining species rich unimproved grassland (five per cent). Other minor categories included beetle banks, conservation grazing, protecting ground nesting birds and maintenance of ponds (five per cent in total).

Figure 42 IPM: Variety and seed choice – 2017

![Variety and seed choice chart]

Figure 43 IPM: Protection and enhancement of beneficial organism populations – 2017

![Protection and enhancement chart]

Note: 'other' includes established beetle banks, conservation grazing, protecting ground nesting birds and maintenance of ponds.
Pest monitoring

In IPM, pests are monitored both to determine whether control is economically justified and to effectively target control options. IPM programmes aim to monitor and identify pests, so that appropriate control decisions can be made in conjunction with action thresholds. Table 33 presents an overview of the pest monitoring measures adopted by the growers surveyed. The majority of the growers sampled (94 per cent) reported that they implemented at least one pest monitoring measure.

Table 33 Summary of responses to IPM pest monitoring questions

<table>
<thead>
<tr>
<th>Pest monitoring activity</th>
<th>Percentage positive response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor and identify pests</td>
<td>93</td>
</tr>
<tr>
<td>Regular monitoring of crop growth stage</td>
<td>81</td>
</tr>
<tr>
<td>Setting action thresholds for crops</td>
<td>18</td>
</tr>
<tr>
<td>Use of specialist diagnostics</td>
<td>17</td>
</tr>
<tr>
<td>Any pest monitoring activity</td>
<td>94</td>
</tr>
</tbody>
</table>

Ninety three per cent of growers reported that they regularly monitored and identified pests and 81 per cent regularly monitored crop growth stages (Table 33). Pest monitoring information was primarily gained by seeking advice from a BASIS qualified agronomist (76 per cent) and by self-inspection by the grower (crop walking, 45 per cent). Other methods of pest monitoring, adopted by less than five per cent of those surveyed, included; press articles, technical bulletins, trapping, using risk warnings and attending discussion groups (Figure 44).

Figure 44 IPM: Monitoring and identifying pests – 2017
Seventeen per cent of farmers also reported that they used specialist diagnostics when dealing with pests that were more problematic to identify or monitor (Table 33). Thirteen per cent used field or pest mapping (predominately field mapping) to aid crop monitoring. Six per cent of growers used tissue testing services to monitor crop nutritional deficiencies and one per cent used clinic services to identify unknown pests.

Despite reporting regular agronomist inspection and crop walking, uptake of setting action thresholds was lower than encountered in other crop systems (18 per cent), reflecting the lower pesticide input to grass and fodder crops.

Pest control

If monitoring, identification, and action thresholds indicate that pest control is required, and preventive methods are no longer effective or available, IPM programmes aim to evaluate the best control method in relation to effectiveness and risk. Control programmes incorporate non-chemical methods alongside, or instead of, chemical control. The premise of IPM is that chemical pest control should be as targeted as possible and the risk of resistance development should be minimised. The effectiveness of the control programme should be reviewed regularly to gauge success and improved as necessary. Table 34 presents an overview of the pest control measures reported by the farmers surveyed. Ninety seven per cent of the growers sampled adopted at least one IPM pest control activity.

Table 34 Summary of responses to IPM pest control questions

<table>
<thead>
<tr>
<th>Pest control activity</th>
<th>Percentage positive response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-chemical control used in partnership or instead of chemical control</td>
<td>87</td>
</tr>
<tr>
<td>Targeted pesticide application</td>
<td>51</td>
</tr>
<tr>
<td>Follow anti-resistance strategies</td>
<td>39</td>
</tr>
<tr>
<td>Monitor success of crop protection measures</td>
<td>82</td>
</tr>
<tr>
<td>Any pest control activity</td>
<td>97</td>
</tr>
</tbody>
</table>

Eighty seven per cent of farmers reported that they used non-chemical control in partnership or instead of chemical control (Table 34, Figure 45). The most common non-chemical method employed was mowing/topping grass to control a range of grass weeds (76 per cent). Thistles were the most common weed cited but mowing was also used to control rushes, ragwort, nettles and docks. Just over a third of farmers (36 per cent) used hand rogueing/manual weeding as part of their weed control measures. Hand weeding was primarily employed to control ragwort and wild oats. Some growers also used mechanical weed control (10 per cent). The mechanical control encountered was mostly for inter-row weed control in fodder swede and turnip crops, but was also employed to control rushes, thistles and bracken in grassland. A further 10 per cent of growers used intensive grazing to control weeds, with a single grower using grazing for disease control (removal of disease inoculum).
There was lower uptake of mechanical control of insects (rolling for leatherjacket larvae, two per cent of sample) and pest trapping and use of biocontrol/biopesticides (both one per cent). It should be noted that other mechanical cultivations aimed to control pests (slugs and leatherjackets) are reported in the seed bed cultivation risk management section.

Figure 45
IPM: Non-chemical control – 2017

<table>
<thead>
<tr>
<th>Percentage of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mowing/topping for weed control</td>
</tr>
<tr>
<td>Hand rogueing/manual weeding</td>
</tr>
<tr>
<td>Mechanical weeding</td>
</tr>
<tr>
<td>Intensive grazing</td>
</tr>
<tr>
<td>Mechanical control of leatherjackets</td>
</tr>
<tr>
<td>Biocontrol/biopesticides</td>
</tr>
<tr>
<td>Trapping</td>
</tr>
</tbody>
</table>

Of the 119 holdings sampled, five (four per cent) were organic. It should also be noted that, even where pesticides are used, pesticide input into grass and fodder crops are far lower, per hectare, than any other crop system. This should be taken into account when considering the responses below.

Fifty one per cent of the growers surveyed stated that they targeted their pesticide applications to reduce pesticide use (Table 34, Figure 46). The most common method reported was use of spot treatments (44 per cent). Spot treatments (applying only to the affected area) were used to combat a range of grassland weeds including thistles, docks, nettles and ragwort. Weed wiping (direct herbicide application to weeds taller than the host crop) was used by 14 per cent of growers, for control of thistles, bracken rushes, nettles and docks. Ten per cent of growers reported that they reduced their dosage or frequency of applications where possible. A further three per cent decreased pesticide application by using drift reduction apparatus and three per cent by precision application systems.

In addition, 39 per cent of farmers stated that they followed anti-resistance strategies when using pesticides, to attempt to minimise the risk of pest resistance development (Table 34). This included 34 per cent minimising the number of pesticide applications used, five per cent using pesticides with multi-site modes of action and three per cent using a range of pesticides with multiple modes of action. Other growers (three per cent) stated that their agronomist provided advice about anti-resistance strategies.
An important aspect of IPM is monitoring the success of risk management and crop protection practices to continually improve regimes. Eighty two per cent of the growers stated that they monitored the success of their crop protection measures (Table 34, Figure 47). This included 54 per cent conducting a regular review with their agronomist, 43 per cent conducting regular self-inspection and 11 per cent monitoring yields as a measure of crop protection success. In addition, lower proportions conducted a seasonal review of crop protection practice (three per cent), used precision technology (in field yield mapping, one per cent) or reviewed input costs (one per cent).

Figure 47 IPM: Monitoring success of crop protection measures – 2017
Acknowledgements

The authors would like to thank all the farmers, agronomists, contractors and seed merchants who agreed to provide information for this survey. The authors would also like to thank Fiona Burnett (SRUC), Sarah Cook, Faye Ritchie and Sacha White (ADAS) and Bashir Surfraz (Fera Science Ltd) for their very helpful comments on the manuscript. In addition, the authors are grateful for the support from Adam Hinchcliffe and his colleagues at Fera Science Ltd, Paul Gavin at the Scottish Government’s Agricultural Census Analysis Team and Adrian Roberts of Biomathematics & Statistics Scotland.

References

5. Met Office Regional Rainfall and Mean Temperature Datasets https://www.metoffice.gov.uk/climate/uk/summaries/datasets

8. Insecticide Resistance Action Committee (IRAC) http://www.irac-online.org/

12. Annual Survey of Hours and Earnings (ASHE) 2017 (Table 3.5a) https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/regionbyoccupation2digitsocashetable3

A NATIONAL STATISTICS PUBLICATION FOR SCOTLAND

The United Kingdom Statistics Authority has designated these statistics as National Statistics, in accordance with the Statistics and Registration Service Act 2007 and signifying compliance with the Code of Practice for Official Statistics.

Designation can be interpreted to mean that the statistics: meet identified user needs; are produced, managed and disseminated to high standards; and are explained well.

Correspondence and enquiries
For enquiries about this publication please contact:
Gillian Reay,
Science and Advice for Scottish Agriculture (SASA),
Telephone: 0131 244 8808,
e-mail: psu@sasa.gsi.gov.uk

For general enquiries about Scottish Government statistics please contact:
Office of the Chief Statistician, Telephone: 0131 244 0442,
e-mail: statistics.enquiries@gov.scot

How to access background or source data
The data collected for this statistical publication:
☐ are available in more detail through Scottish Neighbourhood Statistics
☐ are available via an alternative route
☒ may be made available on request, subject to consideration of legal and ethical factors. Please contact psu@sasa.gsi.gov.uk for further information.
☐ cannot be made available by Scottish Government for further analysis as Scottish Government is not the data controller.

Complaints and suggestions
If you are not satisfied with our service or have any comments or suggestions, please write to the Chief Statistician, 3WR, St Andrew’s House, Edinburgh, EH1 3DG, Telephone: (0131) 244 0302, e-mail statistics.enquiries@gov.scot

If you would like to be consulted about statistical collections or receive notification of publications, please register your interest at www.gov.scot/scotstat
Details of forthcoming publications can be found at www.gov.scot/statistics

Crown Copyright
You may use or re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. See: www.nationalarchives.gov.uk/doc/open-government-licence/