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1. Executive Summary   

This report describes the extensive bio-physical model calibration 

and validation exercise carried out within the Wider Loch Linnhe System. 

Three particle tracking models i) Biotracker; ii) FISCM; iii) UnPTRACK were 

coupled with a 2011-2013 hindcast of the Wider Loch Linnhe System 

(WLLS) hydrodynamic model. The WLLS is a sub model domain of Marine 

Scotland Science’s (MSS) Scottish Shelf Model (SSM; Scottish Government 

2016). Each particle tracking model underwent an iterative process of 

model calibration and validation.  Validation is a process of comparing the 

model and its behaviour to the real system and its behaviour. While 

calibration was achieved here through a sensitivity analysis on key 

parameters, this is the iterative process of comparing the model with 

spatially and temporally relevant field data (or expert judgement where no 

data is available), revising the model as necessary, comparing again, until 

the model is accepted. This is an important task, as while common sense 

verification is possible, a strict verification of a model is intractable. 

Additionally, an assessment of model uncertainty has been integrated 

through an ensemble model process. This gives decision makers confidence 

in the model outputs, for a variety of end user needs.   

The report includes; Details on the parameterisation of the three 

particle tracking models used; hydrodynamic hindcast validation results, 

conclusions and next steps; a detailed sensitivity analysis of various 

parameters tested in each of the particle tracking models; examples of the 

comparisons of the three bio-physical with biological observations collected 

in the field; An example of the ensemble model outputs with key next steps 

required to investigate ensemble model usage prior to making 

recommendations for management.  
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Major findings: 

1. Hydrodynamic calibration and validation is a key component of sea 

lice dispersal modelling. Specific attention should be paid to ensure flow 

fields, which provide the forcing to advect sea lice in the particle tracking 

simulation, adequately represent the system.  

2. Temperature and salinity are important physical parameters which 

influence sea lice behaviour and these modelled parameters should be 

compared to temperature and salinity observations within the system.  

3. Particle tracking model calibration and validation is important for 

sea lice dispersal modelling. The sensitivity analysis carried out highlighted 

the importance of including appropriate sea lice swimming behaviours to 

improve model skill.  

4. Sentinel fish lice count data provided data which could be 

compared with confidence to modelled infective pressure (lice days m-2) 

over the deployment period. Data collection or model validation should be 

focused in late summer and Autumn when lice numbers tend to be highest.  

5. Pelagic sea lice count data was not suitable for linear comparison 

with modelled lice density. This is due to the patchy and transient nature of 

lice in the environment.  

6. The coupled bio physical models produced different results within 

the Loch Linnhe system in terms of local lice abundance, but each fitted 

well to the patterns of variation in lice on salmon in sentinel cages for 

Autumn 2011, the time period of the sensitivity analysis focus. The “best 

fit” models were used to create an ensemble model, which allows 

visualisation of how coherence of the models varied across the spatial 

domain.  
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The coupled bio physical models performed “best” in Autumn 2011 

when compared to the other periods based on the Pearson Correlation 

Coefficient.  

Major Recommendations: 

1. Physical data should be collected in a systematic way in all areas 

relevant to aquaculture to allow hydrodynamic model validation.  

2. Biological data is important for modelling: fish numbers on farms 

and associated lice counts are required as source data for predictions of sea 

lice dispersal models, and sentinel fish lice counts provided the most useful 

data for model validation in this work package. However, for this work, the 

source data was estimated for 7 of 11 farms in Loch Linnhe based on data 

from the other 4 farms (because the data from the 7 were not available). 

Further controlled field trials using sentinel fish when the farm lice 

numbers can be properly quantified is recommended. 

3. Sensitivity analysis should be carried out in a systemic way, and 

results should be used to improve model performance. 

4. Measures of model variability and uncertainty should be 

communicated to appropriate regulators and managers to help aid robust 

decision making. 
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1.1 Work Package Objectives   

The overarching goal of this work package was to complete a model 

inter-comparison and validation exercise based on the Loch Linnhe area on 

the west coast of Scotland. This involved three of the project partners SAMS 

from academia, Mowi Scotland Ltd. from industry and Marine Scotland from 

government research, each applying their own particle tracking models 

(PTMs) coupled with the flow fields from the Wider Loch Linnhe System 

(WLLS) hydrodynamic model. The PTMs used were;  

i) Biotracker (Adams, 2019), applied by SAMS modeller; 

ii) FISCM (Liu et al. 2015, Wolf et al. 2016), applied by MSS modeller; 

iii) UnPTRACK (Gillibrand, 2022), applied by Mowi modeller.  

Through individual model calibration and validation, and a 

comparison and validation exercise involving all three models, the goals 

were to improve confidence in model predictions, through providing a 

measure of model uncertainty, and provide insights into the importance of 

detailing different processes affecting lice larvae which differ slightly 

between the PTMs. 

1.2 Overview of Study Area - Loch Linnhe 

Loch Linnhe, one of Scotland’s largest sea lochs, is located on the west 

coast, spanning about 60 km from Fort William in the North to the Sound of 

Mull and Firth of Lorne in the South (Figure 1.1). The Inner and Outer Loch 

(with depth of >200 m) are separated by the narrow (200 m) and shallow 

(11 m) sill at the Corran Narrows. Steep hills lead to channelling of the wind 

along the Southwest – Northeast direction of the loch, which receives large 

amount of fresh water input. Wind forcing, fresh water input and tides 

influence the hydrodynamic conditions in the loch (Rabe and Hindson 

2017). 
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The unique characteristics of the Loch Linnhe system has led it to be 

the study area for many research projects, investigating environmental 

conditions (Rabe and Hindson 2017 and references therein) as well as the 

impact of aquaculture (for example Salama et al. 2013, 2018). 

  

Figure 1.1. Location of Loch Linnhe in Scotland. 

 

2. Hydrodynamic Modelling in Loch Linnhe 

Ensuring the underlying flow fields from hydrodynamic models 

adequately represent reality is a critical component of sea lice dispersal 

modelling. Much effort was spent on the hindcast hydrodynamic model of 

the WLLS for 2011-2013 to make certain it describes parameters of 

importance to sea lice dispersal modelling; temperature, salinity, wind 

direction, current velocity. Through an iterative process of numerical 

modelling and validation an acceptable model hindcast was agreed. 

2.1 Description of Hydrodynamic Model (WLLS Scottish Shelf 

Model) 

The hydrodynamic model used in this study is the Wider Loch Linnhe 

System (Price et al. 2016, Figure 2.1(a)) which is an implementation of the 



   
 

9 
 

Finite Volume Community Ocean Model (FVCOM, Chen et al. 2003). The 

regional scale model domain covers the western coast of Scotland from the 

southern tip of the Mull of Kintyre up to the Isle of Skye in the North, 

approximately 55 - 57.5° N and from the eastern most reach of Loch Linnhe 

at about 5 - 7.5° W offshore. The WLLS model has a horizontal unstructured 

grid with a nominal node spacing of 100-150 m in outer Loch Linnhe and 

20-100 m in the inner Loch Linnhe, the side lochs and Loch Sunart, with the 

nominal horizontal resolution going up to 15 m in some side lochs.  

2.2 Hydrodynamic model hindcast development  

In order to ensure the most appropriate model hindcast was available 

for describing the patterns of sea lice during this time period an iterative 

process of changing model input data, testing model parameters, and 

comparison with field data (predominately sea temperature) was 

undertaken. Table 2.1 summaries the key model iterations and the 

parameters and/or input data that were varied between model runs. All 

other forcing data and model setup remained unchanged between runs. 
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Table 2.1: Summary of model setup differences between hindcast versions 

Parameter / input 

data type 

Hindcast A Hindcast B Hindcast M 

Atmospheric 

forcing data 

WRF 1/2° 

resolution 

supplied by CEH 

(Vieno et al. 2014, 

2016) for all 

atmospheric 

parameters 

Wind velocities 

from WRF 1/18° 

resolution 

supplied by CEH 

(Vieno et al. 2014, 

2016). 

All other 

parameters from 

ECMWF ERA5 

WRF 1/18° 

resolution 

supplied by CEH 

(Vieno et al. 2014, 

2016) for all 

atmospheric 

parameters 

FVCOM 

atmospheric 

forcing methods 

- WRF data 

supplied on 

regular grid 

- COARE algorithm 

applied to WRF 

data as pre-

processing step  

- Heating 

calculated OFF 

- Fresh water 

heating n/a 

- WRF data 

supplied on 

regular grid 

- ERA5 data 

interpolated to 

FVCOM grid 

 

- Heating 

calculated ON 

- Fresh water 

heating ON 

- WRF data 

supplied on 

regular grid 

- WRF data 

reformatted to 

allow FVCOM 

COARE method 

(heating 

calculated) on 

regular grid 

 

- Heating 

calculated ON 

- Fresh water 

heating OFF 

Horizontal mixing 

coefficient 

0.3 0.3 0.2 

Vertical Prandtl 

number 

0.1 0.1 1.0 

Convective 

overturning 

ON ON OFF 

Adcor ON OFF OFF ON 

 

In general, the sea temperature in Hindcast A was too high in the 

summer and too low in the winter. It was assumed at this stage that this 

was due to the atmospheric forcing data (either the underlying data or an 

inappropriate use of certain atmospheric fields) as the model was originally 

developed using ECMWF ERA-Interim data (Dee et al. 2011). There are also 

a number of methods that can be used to supply atmospheric forcing data 

to FVCOM and these are summarised to an extent in Table 2.1. Hindcast B 
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attempted to addressed this unrealistic summer heating, and winter cooling, 

by using atmospheric heating data from another model, ECMWF ERA5 

(Hersbach et al. 2020). The Centre for Ecology and Hydrology (CEH) winds 

data (Vieno et al. 2014, 2016) were retained, at a higher resolution, as this 

was significantly higher resolution than ERA5 which was deemed important 

to adequately represent the orographically steered wind fields across the 

region. The sea temperature in Hindcast B did not heat up as much as 

Hindcast A, but was similarly cool in the winter and was too cold in the 

Autumn.  

A number of other model parameters were investigated and 

eventually Hindcast M was settled on, which used the CEH forcing for all 

atmospheric parameters – including heating – now supplied to FVCOM on 

the native high resolution regular grid and using an inbuilt FVCOM COARE 

algorithm to calculate some parameters. The key difference was the values 

of the turbulent mixing parameters used, namely the horizontal mixing 

coefficient and the vertical Prandtl number. Hindcast M provided the most 

consistent comparison with field data and it is detailed below. Section 2.4 

presents a validation of the model, focusing on Hindcast M but including 

some results from other hindcast versions (A and B) in order to summarise 

the differences between model versions and show the reasons for settling 

on Hindcast M. 

The model hindcast (hindcast M) was run for three years from 16 

December 2010 to 31st December 2013. The hindcast was forced at the 

open boundary with hourly current vectors, water elevations, temperature 

and salinity derived from the Atlantic Margin Model 7 km resolution 

(Edwards et al. 2012; O’Dea 2012) reanalysis (non-tidal) and forecast (tidal) 

data. The atmospheric forcing, including hourly wind speed vectors across 

the domain, were from a 1/18° WRF model 

(https://www2.mmm.ucar.edu/wrf/users/) provided by CEH (Vieno et al. 

https://www2.mmm.ucar.edu/wrf/users/
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2014, 2016). Fresh water input from rivers and coastal runoff (river flux) 

were from a climatology derived from Grid-to-Grid model (Bell et al. 2007; 

Cole & Moore 2009) output provided by CEH, and a river temperature 

climatology was used based on a climatological analysis of data from the 

Scottish River Temperature Monitoring Network (Jackson et al. 2016). The 

model bathymetry data were derived from high resolution surveys where 

available, EMODNET, and Admiralty Chart data where no other data were 

available. In order to resolve the fresher surface layer of the region of 

interest, WLLS uses vertical coordinates based on a hybrid sigma layer 

scheme with 10 standard terrain following sigma layers in shallow water 

(<13 m depth) and 2 fixed 1 m thick surface layers, 2 fixed 2.5 m thick 

bottom layers and 6 intermediate sigma layers, in deeper water (>13 m 

depth). Parameters, including temperature, salinity, and current velocities 

were output every hour for the duration of the simulation.  This hindcast 

model run was chosen after an extensive validation which tested various 

hindcast versions against observational data to best describe the 

temperature, salinity and currents across the domain.  

2.3 Physical field data 

The quality of the hindcast models was assessed by comparing model 

outputs to relevant physical parameters. An initial validation of Hindcast A 

utilised temperature, salinity, water elevation and currents data, and 

showed that the model temperature did not compare well with 

observations (as outlined in Section 2.2 above). The following validation 

exercise mainly focused on temperature. Once a final model run was 

decided upon (Hindcast M) a repeat validation of all parameters was 

conducted. Figure 2.1 (a) shows the location of the Conductivity 

Temperature Depth (CTD) profiles taken at various times (March, May, 

November) across the three-year time span which were used to validate 

model temperature and salinity. Figure 2.1(b) shows the location of two 
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moorings, close to Corran Narrows (inner Loch Linnhe) and the island of 

Tiree (further out in the model domain), which provided time series data for 

periods corresponding to part of the model run, and the location of tide 

gauge and water level recorder and profiling current meter (Aanderaa 

Recording Doppler Current Profiler, RDCP) time series used for model 

validation. Observational profiles of temperature and salinity, taken at 

different times over the course of the model run, were compared with 

model profiles at approximately the same locations, both in Loch Linnhe 

and further offshore. Comparisons were made with temperatures and 

salinities from the closest model node to observation locations. The Corran 

Narrows data buoy measured near surface temperature, salinity and flows 

and the Tiree mooring measured temperature and salinity approximately 

11 m above the seabed. Four RDCP deployment locations are indicated in 

Figure 2.1, from which data from six deployments were analysed. The 

Kilmaleu RDCP was deployed in April 2021, two deployments were made 

near Gearradh in April and October 2012, the Corran RDCP was deployed in 

January 2013, and two deployments were made near Gorsten in January 

and March 2013 (Gorsten, and Gorsten North). The length of the data time 

series from these RDCP deployments varied, but they were typically longer 

than 1 month. 
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Figure 2.1 (a) WLLS model domain showing the CTD data location and (b) 

Loch Linnhe region showing water level recorder (WLR) and tide gauge (TG), 

moorings and RDCP locations. 

 

2.4 Comparison of hydrodynamic models to physical field data   

Figure 2.2 shows a temperature time series comparison between the 

models and the Corran Narrows and Tiree moorings. Both hindcasts A and B 

compared poorly, whereas hindcast M reproduced both the SST in Upper 

Loch Linnhe at Corran Narrows and SBT close to Tiree extremely well. CTD 

data were gathered within Loch Linnhe only during May in 2011-2013, and 

data outside Loch Linnhe were mainly available from March and November 

2011-2013, with 4 profiles from Feb 2012 and 1 profile from Dec 2012. 

Figure 2.3 shows a scatter comparison of observed (from the CTD profiles) 

and modelled near surface (interpolated to 5 m depth) temperature and 

salinity, for the three hindcast simulations. In terms of temperature, 

hindcast A appears perform well in May and November, but is too cold Feb 

and March. Hindcast B is too cold most of the time, whereas hindcast M 
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performs well all the time. In terms of salinity, hindcast A is mainly a little 

too fresh, but hindcasts B and M perform very well.  The R squared values 

shown in Figure 2.3 confirms this. 

Figures 2.4 and 2.5 show comparisons of measured temperature and 

salinity profiles, respectively, with model hindcasts A, B and M. Only data 

from Loch Linnhe in May are shown, as this is the primary region (and time) 

of interest. Hindcast A reproduced the temperature profiles well within 

Loch Linnhe, whereas hindcast B was consistently too cold. This is not 

surprising, as the Corran Narrows time series (Figure 2.2) shows that 

hindcast A reproduced temperature reasonably well in May, but not at 

other times of the year. Hindcast M also performed very well at 

reproducing the May temperature profiles in Loch Linnhe (Figure 2.4), and 

we know that it also performed well at Corran Narrows throughout the year 

(Figure 2.2). As for the salinity profiles in May (Figure 2.5), all three models 

performed reasonably well, generally reproducing the shape of the profiles. 

All models were a little fresher than observed. Close to the bed, hindcast A 

was consistently around 2 smaller than observed, hindcast B was around 1 

less than observed, but hindcast M was extremely close, no more than 0.25 

than observed.
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Figure 2.2: Comparison of sea surface temperature (SST) and sea bottom 

temperature (SBT) approximately 11 m above the seabed, with WLLS at 

Corran Narrows and Tiree moorings, respectively. 
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Figure 2.3: Scatter comparison plots comparing observed (CTD) and 

modelled near surface temperature and salinity, for the three hindcast 

simulations, with different months in the year indicated. The one-to-one 

line, indicating a perfect comparison, and the R squared values are shown. 
 

Figure 2.4: Comparison of measured temperature profiles with model 

hindcasts A, B and M from within Loch Linnhe. The location of each CTD 

station is indicated in the map on the RHS. 



   
 

18 
 

Figure 2.5: Comparison of measured salinity profiles with model hindcasts 

A, B and M from within Loch Linnhe. The location of each CTD station is 

indicated in the map on the RHS. 

 

Water elevation data were gathered from two water level recorders (WLRs) 

and two tide gauges (TG) in the region. The WLRs were positioned in Loch 

Upper Loch Linnhe (Fort William) and in the Sound of Mull, and the TGs 

were positioned at Tobermory (Mull) and Portrush (Northern Ireland) 

(Figure 2.1). Figure 2.6 shows a times series comparison of mean sea level 

at each location over a 17.5-day period, spanning just over a spring-neap 

tidal cycle. There is very little difference between the water elevation 

results from the three model hindcasts, so only hindcast M is shown in 

Figure 2.6. The three locations well within the model domain compare very 

well with the data. Portrush compares less well. This is most likely due to 

its proximity to the model boundary and an Amphidromic point between 

Isla and the Mull of Kintyre. Table 2.2 shows statistics comparing the 

performance of the three hindcasts with the observations, and confirms 

that hindcast M is the best performing. 
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Figure 2.6: Mean Sea Level (MSL) from Water Level Recorders (WLR) and 

Tide Gauges (TG) compared with WLLS hindcast M. 
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Table 2.2: Summary of statistics comparing the performance of the three 

hindcasts with the observations, including difference in near surface (5 m) 

temperature (ΔT) and salinity (ΔS) and their standard deviations (std) using 

CTD data from March, May and November, and the Root Mean Square (RMS) 

difference between observed and modelled water elevations at four 

locations. 

  Hindcast A Hindcast B Hindcast M 

Mar ΔT ± std (°C) -2.53 ± 1.95 -2.78 ± 1.79 -0.08 ± 0.35 

May ΔT ± std (°C) -0.18 ± 0.29 -1.93 ± 0.33 0.59 ± 0.21 

Nov ΔT ± std (°C) -0.39 ± 0.66 -3.50 ± 1.75 -0.04 ± 0.33 

Mar ΔS ± std -0.76 ± 0.48 -0.07 ± 0.22 -0.15 ± 0.35 

May ΔS ± std -0.88 ± 0.63 -0.14 ± 0.71 -0.14 ± 0.60 

Nov ΔS ± std -0.91 ± 0.58 -0.23 ± 0.31 -0.17 ± 0.35 

Elevation RMS 

difference (m) Sound of 

Mull WLR 0.16 0.16 0.16 

Elevation RMS 

difference (m) Fort 

William WLR 0.19 0.19 0.19 

Elevation RMS 

difference (m) 

Tobermory TG 0.17 0.17 0.17 

Elevation RMS 

difference (m) Portrush 

TG 0.19 0.20 0.20 

 

Figure 2.7 shows scatter plots comparing observed near surface velocities 

from the MSS RDCP deployed near Kilmalieu in Loch Linnhe in April 2011 

and modelled near surface velocities from WLLS hindcasts A, B and M. The 

RDCP data exhibits a broad north east – south west tendency (most 

probably a tidal ellipse), and also has a consistent westward (roughly 

onshore) component with speeds up to 0.3 m s
-1
. This behaviour is 

reproduced by all three models although most of the modelled data appears 

to contribute to the north east – south west component. Hindcast M appears 

to best match the RDCP velocity, as hindcasts A and B produced more 

scatter outside the range of observed velocities. Figure 2.8 shows a two-
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week time series comparison of the same near surface RDCP recorded 

velocities, and those from hindcast M. Clearly the model does not exactly 

reproduce the velocity time series, but the amplitude and phase of the 

velocity components is usually correct. Figures 2.7 and 2.8 both show that 

the model appears to do least well as reproducing the larger westward 

velocities (u<0). The time series comparisons of RDCP observations with 

hindcasts A and B are in Appendix 2. 

Figure 2.7: Scatter plots comparing observed near surface velocities from 

the RDCP deployed near Kilmalieu in Loch Linnhe in April 2011 and 

modelled near surface velocities from WLLS hindcasts A, B and M (a, b and 

c, respectively). 
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Figure 2.8: Comparison of measured near surface current speeds from a 

Recording Doppler Current Meter (RDCP) deployed near Kilmalieu in Loch 

Linnhe in April 2011 with the modelled near surface currents from hindcast 

M. 

 

Figure 2.9 shows scatter plots comparing observed near surface velocities 

from the six RDCP time series examined and modelled near surface 

velocities from WLLS hindcast M. The similarity between observed and 

modelled values appears to vary within the model domain. The velocity 

magnitudes and general direction tends to agree in most cases, but in some 

cases there is often significant scatter in the observed data that is not 

represented in the model (e.g. Figure 2.9c). This scatter is most likely as 

short duration wind or fresh water driven event that was not captured by 

the model. Figure 2.8 shows a two-week time series comparison of RDCP 

observations near Kilmalieu with WLLS hindcast M. The equivalent time 

series comparisons at the other RDCP deployment locations and time 

periods are in Appendix 2. 
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Figure 2.9: Scatter plots comparing observed near surface velocities from 

the six RDCP time series examined and modelled near surface velocities 

from WLLS hindcast M. (a) Kilmalieu Apr 2011, (b) Gearradh Apr 2012, (c) 

Gearradh Oct 2012, (d) Corran Jan 2013, (e) Gorsten Jan 2013, and (f) 

Gorsten North Mar 2013. Blue shows observed data from RDCP and orange 

shows data from WLLS model hindcast M. 
 

2.5 Evaluation of hydrodynamic model hindcasts  

Within this work package much effort was placed on hydrodynamic 

model (HDM) evaluation. Decisions on best hydrodynamic hindcast should 

be made a priori based on model validation – i.e. use the HDM which 

provides the best fit with field data. In this case, hindcast M provided the 

best agreement with the physical data. Hindcasting requires detailed 

historical data to drive and to validate the model. A full calibration and 

validation of the hydrodynamic model may include assessment of Eulerian 



   
 

24 
 

parameters (e.g. sea surface height, current velocity, water temperature and 

salinity) and, preferably, Lagrangian currents (e.g. from dye studies or 

drifter releases).   

2.6 Conclusions and next steps from hydrodynamic modelling 

• Flow fields from the hydrodynamic model provide the forcing to 

advect sea lice in the particle tracking simulation. It is therefore 

important that modelled currents reflect actual currents as accurately 

as possible. 

• Use atmospheric forcing data (wind, heating) and methods (grid 

resolution, interpolation, heating calculation) that suit the model 

simulation and the scale of local processes.  

• Appropriate turbulent mixing parameters must be applied for the 

area.  

• To ensure this, use an iterative calibration process to ensure that the 

chosen atmospheric forcing and turbulent mixing parameters improve 

the comparison between modelled and observed velocity, 

temperature and salinity. 

• It is challenging to reproduce nearshore currents in hydrodynamic 

models as the currents field can vary significantly in space and time. 

In hydrodynamically complex areas is it not always possible to 

achieve an exact fit to field data, but comparisons should be made to 

ensure the model is broadly reproducing the expected circulation 

patterns. 

3. Biophysical Modelling in Loch Linnhe 

Three particle tracking models were run using hindcast M from the 

hydrodynamic component of the project to infer the likely distribution of 

sea lice in the environment for the study period. This was compared to 

biological field data to quantify the performance of each model. 
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3.1 Description of Particle Tracking Models 

Each model uses a Cartesian system of coordinates where the 

particles represent a cohort of sea lice in the nauplii stage, which mature 

into the infectious copepodid stage, this is carried out within UnPTRACK and 

Biotracker, and through a post processing step in FISCM. These particles 

move as a result of three processes. First, particles are advected using 

hourly vertical and horizontal velocity output from the WLLS hydrodynamic 

circulation model. Secondly, random perturbations due to eddy diffusion 

are taken into account using a random walk algorithm with specified 

diffusion coefficients. Finally, particles may be biologically propelled 

following vertical swimming behaviours. These parameters underwent a 

one-at-a-time sensitivity analysis detailed in section 3.2.  

The simulation periods are consistent with the field study reference 

periods;   

• Spring models run from 1st April - 31st May  

• Autumn models from 1st September – 15th November  

The time frames for the full simulations were used as they cover the 

period of field work, after a fifteen day “spin-up” time to allow analysis to 

occur on a fully established sea lice distribution. The source type and 

number of particles along with various modelling parameters are further 

tested using a sensitivity analysis (see section 3.2 for details).       

3.1.1 BioTracker  

SAMS’ BioTracker code (Adams et al. 2012, 2014, 2016) was written 

for use with the outputs of the ‘WeStCOMS’ hydrodynamic model (Aleynik 

et al. 2016, Aleynik 2020). Both this model and the WLLS are based on the 

Finite Volume Coastal Ocean Model (FVCOM) system (Chen et al. 2013), and 

as such the outputs are in a fairly similar form. However, some variables 
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differ between the two models, see Adams & Brain (2021) for details of 

methodology used to couple this particle tracking model with the SSM.   

Particles are moved horizontally subject to the water currents 

predicted by the hydrodynamic model, in addition to random turbulent 

diffusion. Larval particles inhabit the upper layer of the water column, and 

were not allowed to move vertically between layers (Cantrell et al. 2019). 

Stage durations are dependent on water temperature (which typically vary 

between 8 – 14 °C in this locality), with particles moving from the non-

infective nauplii stage to the infective copepodid stage after accumulating 

40 degree-days (1 day at 10 degrees C equates to 10 degree-days). 

Particles are removed from the simulation after 150-degree days (Johnsen 

et al. 2016, Samsing et al. 2016). Particles are viewed as “super-particles”. 

This means lice particles are able to infect multiple sites; i.e. they do not 

end their movement when an infection/arrival event occurs. Particles also 

have a density (reduced over time by mortality) which governs the 

predicted overall spatial extent. The weighting (number of lice represented 

by) of each larval particle was assumed to decay over time at a rate of 0.01 

hr-1 (Amundrud & Murray 2009, Adams et al. 2016).  The particle tracking 

code is available in an online repository (Adams, 2019). 

3.1.2 FISCM 

The tracking simulations undertaken by Marine Scotland Science 

(MSS) were performed by FISCM (FVCOM i-state configuration model), an 

offline Lagrangian / individual based model for FVCOM (Ji et al. 2011). 

Particles positions due to advection are updated by FISCM every 30 

seconds using a 4th-order Runge-Kutta scheme to solve the Lagrangian 

equation of motion. FISCM also include a Gaussian random walk approach to 

introduce turbulent diffusion in the vertical and horizontal dimensions 

using respective diffusion coefficient. Boundary conditions ensure that 

particles stay within the model domain: when reaching the land at a new 
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time step the particle position is reset to the previous time step and 

reflecting conditions are used for the seabed and the free surface. Finally, 

MSS adapted FISCM to allow particles to reproduce a diel vertical migration 

using the following coefficient set by the user: 

-  maximum swimming depth 

- upward velocity (effective between 6am and 6pm) 

- downward velocity (effective between 6pm and 6am) 

FISCM does not currently have a function for changing behaviour 

from non-infective to the infective stage, so this is done in a post 

processing stage, based on age in hours or degree days based on equations 

in Stien et al. (2005).  

3.1.3 UnPTRACK 

UnPTRACK (Unstructured mesh Particle Tracking model) is a multi-

purpose lagrangian particle-tracking model designed to simulate the 

transport pathways of pelagic biota, chemical contaminants or particulate 

wastes using flow fields generated by unstructured mesh HDMs (Gillibrand, 

2022; https://github.com/gillibrandpa/unptrack.git). UnPTRACK was 

developed from an earlier particle-tracking model that used hydrodynamic 

flow fields from regular grid models; the earlier version has been used to 

simulate the transport and dispersion of solute veterinary medicines (Willis 

et al., 2005) and dispersal of pelagic organisms, including sea lice larvae 

(Gillibrand and Willis, 2007) and harmful algal blooms (Gillibrand et al., 

2016). In 2017-2018, the original model was developed to utilise flow 

fields from the unstructured mesh hydrodynamic models that are 

increasingly being used in coastal environments, to become "UnPTRACK".  

The model runs offline, being forced by flow fields from previously-

run HDMs. Advection can be treated using either a fourth-order Runge-

Kutta algorithm or a simple Euler approach. A random walk model is used to 

https://github.com/gillibrandpa/unptrack.git
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simulate horizontal and vertical eddy diffusion. Various aspects of 

biological development (e.g. temperature-dependent stage development, 

mortality) and behaviour (e.g. vertical migration, low salinity avoidance) 

can be simulated and relevant parameters specified in the input file. The 

basic advection, diffusion and biological algorithms in the model have been 

described by Gillibrand and Willis (2007) and Gillibrand et al. (2016).  

3.2 Particle Tracking Model Development (Parameter Sensitivity 

Analysis)  

To gain an understanding of spatial-temporal distributions of salmon 

lice populations we rely on modelling which describes both the physical 

environment and the biological processes that drive salmon lice behaviours. 

These models require parameterisation, and these parameters are 

calculated with various degrees of confidence, highlighted in Murray and 

Moriarty (2021). Prior to using these models for management, it is 

important to understand how sensitive the model outputs are to changing 

input parameter values. In addition to understanding how well they predict 

variability in lice abundances in the environment in space and time.  

Here sensitivity analysis (SA) is used to investigate the main 

parameters and process affecting predictions of biophysical models, by 

reference to variation from a baseline simulation, and comparison to 

empirical data within a Scottish sea loch. The aim is to understand whether 

the current state of knowledge on model input and process uncertainty is 

sufficient to enable a decision to be taken (Maier et al., 2016) regarding the 

best fit model parameters or if further observational data is required to 

better inform our models. 

A one-at-a-time sensitivity analysis (OATSA) of key parameters was 

carried out to get an understanding of how adjusting each parameter may 

change the message. This does not allow an assessment of how each 
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parameter interacts with the other model parameters. The model validation 

and calibration framework is outlined in Figure 3.2.1. 

 

Figure 3.2.1: Framework outlining steps undertaken for bio physical 

model sensitivity analysis and model calibration. n is the total number of 

iterations preformed (n differs for each particle tracking model).  

 

In this limited sensitivity test one simulation time period - 01st 

September – 15th November 2011 was assessed, this time frame was chosen 

because the data showed the most lice within the system during the time 

frame.  

In all particle tracking models, each adult female louse is assumed to 

hatch 30 nauplii per day. Standard parameter values were set as outlined in 

section 3.1, with the parameter being assessed by varying them using a 

one-at-a-time approach.  
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Horizontal Diffusivity, KH: Characterises processes on unresolved 

horizontal scales. To represent turbulence on a sub-grid scale and may 

account for fluctuating swimming motion by the salmon louse a range of 

values between 0 m2s-1 – 10 m2s-1 for the diffusion coefficients were tested 

in each particle tracking model. Additionally, within the UnPTRACK PTM, a 

Smagorinsky algorithm was used, which calculates the local horizontal 

diffusivity as a function of horizontal velocity shear and local grid cell size. 

Vertical Diffusivity, KV: In the vertical, particles can either be 

passively drifting with the local currents or given swimming behaviours to 

mimic observed behaviour of sea lice. To represent vertical diffusivity, a 

random walk in the vertical using a range of values between 0 m2s-1 – 0.1 

m2s-1 were tested in Fiscm and UnPTRACK. 

Number of Particles, NP: Within each PTM there is a trade-off which 

must be made between model performance (speed and output file size) and 

model accuracy. Thus, we tested a particle source rate of between 2 – 100 

Np source-1 hour-1. 

Number of Particles, NP, Consistency of Results: to assess the 

consistency between model runs 6 model runs were carried out for each 

case of 2,10, and 50 Np source -1 hour-1 in UnPTRACK.  

Swimming Behaviour: Salmon lice have limited swimming capacity 

which can influence their horizontal transport through their vertical 

positioning. Here we assess the model fit of a range of swimming 

behaviours within each PTM. 

UnPTRACK assessed the following scenarios:   

1. “Fixed Depth”: Particles remain at a fixed depth of 1 m throughout 

(no swimming or vertical diffusion).  

2. “Passive”: No swimming or sinking behaviour, but particles are 

subject to vertical diffusion.  
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3. “Slow”: Upward swimming speed of 0.5 mm s-1 for both nauplii and 

copepodids (Johnsen et al., 2014) from 6am – 6pm, with a maximum 

allowed depth of 50 m. Passive at night.  

4. “Fast”: Upward swimming speed of 12.5 and 21.4 mm s-1 

respectively for nauplii and copepodids (Brooker et al, 2018) from 6am – 

6pm, with a maximum allowed depth of 50m. Passive at night.  

5. “Extended”: “Fast” upward swimming period extended to 5 am – 7 

pm, with a maximum allowed depth of 50m. Passive at night. 

6. “+Sinking”: “Fast” upward swimming (6 am – 6 pm) with sinking at 

night, with a maximum allowed depth of 50m. Sinking speeds of 0.9 and 1.0 

mm s-1 for nauplii and copepodids respectively (Brooker et al., 2018). 

Fiscm assessed the following scenarios:  

1. “Fast swimmer”: 50 mm s-1  upward velocity, 50 mm s-1  sinking 

velocity, with a 15 m maximum depth. 

2. “Slow swimmer”: 0.5 mm s-1  upward velocity, 0.5 mm s-1  sinking 

velocity, with a 15 m max depth. 

3. “Fast swimmer with sinking velocity”: 50 mm s-1  upward velocity, 

5 mm s-1  sinking velocity , with a 15 m max depth. 

4. “Swimmer with passive sinking”: 5 mm s-1  upward velocity, 0 mm 

s-1  sinking velocity and 15 m max depth. 

5. “Shallow DVM”: 5 mm s-1  upward velocity, 5 mm s-1  sinking 

velocity and 5 m max depth. 

6. “Deep DVM”: 5 mm s-1 upward velocity, 5 mm s-1  sinking velocity 

and 30 m max depth. 

7. “No depth limit” DVM”: 5 mm s-1  upward velocity and 5 mm s-1  

sinking velocity.  
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8. “Fixed Depth”: Particles remain at a fixed depth of 0 m or 15 m 

respectively (no swimming or vertical diffusion).  

9. “Passive”: No swimming or sinking behaviour, but particles are 

subject to vertical diffusion.  

Initial Spread: The exact location of a farm and its cages can vary 

from the reported mid-point of the farm. Particles were seeded at various 

radii (0-100m in UnPTRACK and 0-75m in Fiscm),  around the farm location 

to assess the effect of spread. 

Source Type: Lice on farm source information is now reported weekly 

in Scotland, previously it was reported monthly. To assess the impact of 

different source rates the UnPTRACK model considered the following: 

1. “Variable”: Source rates of larvae lice vary in time (from weekly 

lice counts) and by site (based on lice counts at Mowi sites and weighted by 

biomass at SSF sites). 

2. “Constant”: The total source of lice from each site is averaged over 

time and set as a constant rate. So total number of lice released from each 

site is the same as the “Variable” source, but is constant over time. 

3. “Fixed”: The total number of lice released by all sites is averaged 

over time and across sites. So, all sites release the same constant source of 

lice, regardless of biomass. The total number of lice is the same as the 

“Variable” and Constant” runs. 

4. “COGP”: Estimated number of lice based on reported biomass at 

each site in October 2011, an average fish weight of 3.33 kg, and a lice 

count at all sites of 0.5 adult females per fish. 

Table 3.2.1 below summarises the parameters assessed and the 

values used within this limited sensitivity analysis, highlighting which PTM 

was used to test the parameter.  
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Table 3.2.1: Parameters tested in sensitivity analysis, PTM = Particle 

Tracking Model where U = UnPTRACK, B= Biotracker and F= Fiscm, 

Swimming behaviours are detailed in text only. 

Parameter  Unit PTM Value Tested  

1 2 3 4 5 6 7 

Horizontal 

Diffusivity, KH  

m2s-1 

 

 

 F 0 0.001 0.002 0.01 0.1 1 10* 

U 0 0.002 0.02 0.1 1 10 Smag

orinsk

y 

0.1/0.

2 

B 0 0.001 0.01 0.1 1   

Vertical 

Diffusivity, KV 

m2s-1 
 

U 0 0.0001 0.001 0.01 0.1   

F Variable 

+ DVM 

Variable 

+ Fixed 

Depth 

Fixed 

+ 

Fixed 

Dept

h 

    

Number of 

Particles, NP 

# 

 
 

B 2 5 10 25 50 100  

F 5 10 25 50    

U 2 5 10 25 50 100  

Initial 

Spread  

metr

es 

U  0 10m 50m 75m 100m   

Source 

Type  

NA U Variable Constant Fixed COGP    

 

3.3 Aquaculture study area   

During the study period (2011-2013) the fish farms within the 

system were consented to produce approximately 10% of Scotland’s salmon 

production. This production was undertaken by 10 farms in Loch 

Linnhe with additional farms feeding in to the system from side-lochs 

(Figure 3.3.1). In the 2011-2013 period these farms were operated by two 

companies and were managed in two separate farm management areas; 

however, these are considered as a single disease management area for 

regulatory disease control measures.   
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 Figure 3.3.1: Map of Loch Linnhe showing locations of particle 

release points (aquaculture sites), sentinel cage and plankton tow sampling 

locations.  

 

3.3.1 Farm Site Locations    

Details of salmon farm sites in Loch Linnhe used for the model 

comparison are given in the Table 3.3.1 below. This is reflective of the sites 

from 2011-2013. These site locations are used to simulate the dispersal 
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patterns given the main sources of sea lice within the main body of water 

within the Loch Linnhe System.     

  Table 3.3.1: The salmon farm/location sites within the Loch Linnhe system 

used in the comparison study.  

Farm 
Operator 

Farm Location Longitud
e   

Latitude
   

Consented 
Biomass (t)   

Mowi Gorsten   -5.176   56.786   1990   

Mowi Linnhe   -5.24976   56.73151
   

2500   

Mowi Loch Leven   -5.12387   56.69248
   

1450   

Mowi Kingairloch   -5.50223   56.61498
   

1000   

Scottish Sea 

Farms 

Shuna   -5.38125   56.59316
   

800   

Scottish Sea 

Farms 

Loch Creran (B)     -5.36024   56.52181
   

1500   

Scottish Sea 

Farms 

Lismore N  -5.47515   56.55101
   

1130   

Scottish Sea 

Farms 

Lismore S  -5.54119   56.50869
   

1180   

Scottish Sea 

Farms 

Walters (east 

Lismore)   

-5.49998   56.50267
   

999   

Scottish Sea 

Farms 

Dunstaffnage   -5.46273   56.45067
   

1300   

Scottish Sea 

Farms 

Kerrera A   -5.51173   56.41872
   

500   

Scottish Sea 

Farms 

Kerrera B   -5.49505   56.4138   100   

 

3.3.2 Estimating Lice Loads on Farms for Model Validation  

The source of lice larvae from the farms was estimated from lice 

counts on the four Mowi (then Marine Harvest Ltd) sites in Loch Linnhe. 

Weekly counts of adult females on each site were available (with just the 

occasional week missing; in total, across all four Mowi sites, five counts 

were missing from the 160 counts used for the four simulations).  Lice 

count data were not available from the seven Scottish Sea Farms sites.  
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In order to provide an estimate of lice numbers from all sites, the 

Mowi lice count data were summed over the four sites and the total 

biomass of fish was calculated. A weekly average value of adult female lice 

per tonne of fish was calculated for the Mowi sites. This value was then 

combined with the reported biomass at the SSF sites over the modelled 

periods to give a weekly estimate of the number of adult female sea lice at 

each SSF site. These data are plotted in Figure S1. 

Clearly, there is considerable uncertainty in these estimates for lice 

numbers at the SSF sites. This method assumes similar lice management 

approaches by the two operators and that the sites were at similar stages 

of production. A simulation using a fixed release of lice larvae from all sites 

(i.e., no biomass or time dependence) was performed as a null hypothesis. 

Each adult female sea louse was assumed to hatch 30 eggs per day 

(Heuch et al., 2000, Rittenhouse et al., 2016) as nauplii. The daily number of 

larvae released can therefore be estimated from the total number of adult 

females on each site. 

3.4 Biological field data    

MSS have carried out extensive field sampling and experimental 

campaigns in Inner and Outer Loch Linnhe over several years, including 

sentinel cage deployments and plankton tows for the biological field 

sampling. Historical lice counts are also available from some of the 

farms.  The biological field data for the period 2011-2013  were used here 

to compare the model results and separately validate three PTMs during 

that period. This allowed an opportunity to test three different dispersal 

models against an observational dataset to establish the robustness of 

dispersal modelling techniques and predictions against independent data.  

During the spring and autumn 2011, 2012 and 2013 field seasons 

(see the six field study reference periods below) sea lice were sampled 
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using plankton trawls at either ~30 trawling stations sampling for 

planktonic phase lice (following Penston et al. 2008, described in Salama et 

al. 2018; see table S2 for locations) and 9 sentinel cage fish (as used by Pert 

et al. 2014) sites to sample settled stage lice (table S3 for locations) (Figure 

3.3.1) (Pert et al. 2021). Details on the plankton station and sampling 

information and the sentinel cage station and sampling information can be 

also be found in Pert et al. (2021) supplemented with additional 

deployment records (Table 3.4.1).  

The biological field data were collected during 2011 -2013 time 

period, and published in 2021 (see Pert et al. 2021). Precise hourly timings 

of deployments and recovery of sentinel cages are estimated to derive 

information for model-data comparisons (Table 3.4.1). 
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Table 3.4.1 Details of timings used for comparison between sentinel 

cage data and model runs. Temporal definition of deployment was resolved 

to 12h (for each model run deployment and recovery was set as 12:00h). 

Field Study 

reference periods  

Total 

Numbe

r of 

days 

Deployment 1 Deployment 2 Deployment 3 

May 9 – May 

28, 2011  

20 12:00 12/05/11 

- 12:00 

19/05/11 

12:00 

19/05/11 - 

12:00 

27/05/11  

12:00 

12/05/11 – 

12:00 

27/05/11 

Oct 21 – Nov 09, 

2011 

20 12:00 

26/10/11- 

12:00 01/11/11
 

12:00 

01/11/11 – 

12:00 

09/11/11 

NA 

Apr 29 – May 18, 

2013 

22 12:00 30/04/13 

- 12:00 

07/05/13 

12:00 

08/05/13 - 

12:00 

16/05/13 

NA 

Sep 30 – Oct 19, 

2013 

20 12:00 02/10/13 

- 12:00 

09/10/13 

12:00 

09/10/13 - 

12:00 

15/10/13 

NA 

 

3.5 Evaluation of Sensitivity Analysis Outputs 

The following heat maps represent the variance explained (r value) in 

each model for each parameter, this is an output of the framework for 

biophysical model sensitivity analysis and model calibration (Figure 3.2.1).  

Answering the key question: “How much does the model performance 

change when we vary the parameters within in the model?” This gives us an 

understanding of the importance of each model parameter within each 

particle tracking model.  

The metric chosen to evaluate the model performance here is the 

Pearson correlation coefficient (r), which is a measure of the direction and 

strength of the relationship between two continuous variables. For a 

correlation between variables x and y, the formula for calculating the 

sample Pearson's correlation coefficient is given by 
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𝑟 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛
𝑖=1

√[∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 ][∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 ]
 

where xi and yi are the values of x and y for the ith individual. 

Table 3.5.1 Rule of Thumb for Interpreting the Size of a Correlation 

Coefficient (Hinkle et al 2003, Mukaka (2012). 

Size of Correlation Interpretation 

.90 to 1.00 (−.90 to −1.00) Very high positive (negative) 

correlation 

.70 to .90 (−.70 to −.90) High positive (negative) correlation 

.50 to .70 (−.50 to −.70) Moderate positive (negative) 

correlation 

.30 to .50 (−.30 to −.50) Low positive (negative) correlation 

.00 to .30 (.00 to −.30) negligible correlation 

 

Pearson was chosen as it is a relatively simple statistical metric for 

interpretation (Table 3.5.1), which works for data that has an assumption of 

a linear relationship. The mean lice abundance on sentinel fish data 

compared to modelled infective pressure (lice days m-2) should fit this 

assumption, but it is not possible to use r to fairly assess the planktonic 

field data against modelled density (lice m-2), as these data are zero inflated. 

This means it would be beneficial to conduct further analysis on all model 

outputs using additional model performance metrics.   

The biological field data (mean lice abundance on sentinel fish) for 

each time period is compared with the modelled infective pressure (lice 

days m-2). This metric can be sensitive to outliers so the results were 

assessed for sites (top) and sites excluding No. 3 deployment 2 which was a 

consistent outlier in all sea lice dispersal models. 
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Horizontal Diffusivity, KH 

The value chosen to represent horizontal diffusivity within the model 

configuration influences the model's skill (Figures 3.5.1 – 3.5.3) . The 

inference provided by the UnPTRACK PTM suggests that lower constant KH 

values (in the range 0 – 0.1 m2s-1), or using a Smagorinsky model with a 

coefficient of cs = 0.1 – 0.2, provided a good model fit within the Loch 

Linnhe system (Figure 3.5.1). The fit was markedly reduced for the (single) 

simulation with KH = 10.0 m2 s-1, demonstrating that this value was too high 

to adequately represent sub-grid-scale mixing processes on the relatively 

high-resolution mesh of Loch Linnhe. Similarly, the horizontal diffusivity 

values taken directly from the FVCOM hydrodynamic model output and 

input into the particle tracking algorithm were not appropriate for the 

random walk model used to represent diffusion in the latter (Figure 3.5.1). 

The simulation with zero horizontal diffusion (KH = 0.0 m2 s-1) 

extended the radius at which high correlation coefficients were achieved 

when using UnPTRACK , particularly when Station 3 was excluded (Figure 

3.5.1). But when all stations were included, the correlations at the smallest 

radial distance (50 m) were poorer with the lower values of KH. Some sub-

grid-scale diffusion is also needed to avoid the results becoming sensitive 

to the initial spread of the particles at the time of release (see 5. Initial 

Spread Below). 
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Figure 3.5.1 UnPTRACK; heatmap showing model skill (Pearson 

correlation coefficient) for a range of horizontal diffusivity (KH) values and 

for different radial distances about the sentinel cage location. The numeric 

values on the x-axis represent constant coefficients of horizontal diffusivity 

(m2 s-1) used in the particle tracking model; the values of cs = 0.1 and cs = 

0.2 are coefficient values in the Smagorinsky algorithm for horizontal 

diffusivity, which calculates diffusivity as a function of grid cell size and 

velocity shear; the final “Variable” label represents a simulation which used 

the horizontal diffusivity output by the WLLS hydrodynamic model. The 

correlation coefficients for all sites (top) and sites excluding No. 3 (bottom) 

are shown for deployment 2, Autumn 2011. 

 

The inference from Biotracker suggests that KH values in the range 0.1 -1 

m2s-1 produce a good model fit (Figure 3.5.2). Biotracker was run with 

particles at a fixed depth whereas UnPTRACK had swimming behaviours 
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included. A similar trend to UnPTRACK was seen with an improved fit when 

site 3 was excluded. 

 

 
 

Figure 3.5.2 Biotracker; heatmap showing model skill (correlation 

coefficient, r) for a range of horizontal diffusivity (KH) values and for 

different radial distances about the sentinel cage location. The numeric 

values on the x-axis represent constant coefficients of horizontal diffusivity 

(m2 s-1) used in the particle tracking model. The correlation coefficients for 

all sites (top) and sites excluding No. 3 (bottom) are shown for deployment 

2, Autumn 2011. 
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The correlations achieved in FISCM suggests that KH values in the range of 

0.002 m2s-1 and  0.1 m2s-1 produce a good model fit, with an optimal fit at 

0.01 m2s-1 (Figure 3.5.3). FISCM, similar to UpPTRACK was run with 

swimming behaviours included.  A similar trend to UnPTRACK and 

biotracker was seen with an improved fit when site 3 was excluded. 

 
Figure 3.5.3 FISCM; heatmap showing model skill (correlation 

coefficient, r) for a range of horizontal diffusivity (KH) values and for 

different radial distances about the sentinel cage location. The numeric 

values on the x-axis represent constant coefficients of horizontal diffusivity 

(m2 s-1) used in the particle tracking model. The correlation coefficients for 

all sites (top) and sites excluding No. 3 (bottom) are shown for deployment 

2, Autumn 2011. 
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Vertical Diffusivity, KV 

UnPTRACK does not seem to be as sensitive to the vertical diffusivity 

parameter value, compared to other model parameter values tested here 

(Figure 3.5.4). This suggests that the baseline value KV=0.001 m2 s-1 is 

appropriate within this model setup. Larger values, greater than 0.01 m2 s-1 

did produce weaker correlation coefficients. As vertical diffusion increases, 

the modelled swimming behaviour of larval lice will be less effective at 

moving the lice to the sea surface during daylight hours, leading perhaps to 

more dispersion and, clearly, less agreement with the observed infection 

pressure at the sentinel cage locations. Using the vertical diffusivities 

output by the FVCOM hydrodynamic model also did not improve the 

comparison with data and this approach is not, therefore, recommended for 

the time being. Note that the vertical diffusivities calculated by FVCOM, or 

any baroclinic hydrodynamic model, will vary with depth; it is important, 

therefore, that the particle tracking model is able to correctly simulate 

particle diffusion in spatially–varying diffusivity (Visser, 1997; Ross and 

Sharples, 2004).  
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Figure 3.5.4 UnPTRACK; heatmap showing model skill (Pearson 

correlation coefficient) for a range of vertical diffusivity (KV) values and for 

different radial distances about the sentinel cage location. The numeric 

values on the x-axis represent constant coefficients of vertical diffusivity 

(m2 s-1) used in the particle tracking model; the final “Variable” label 

represents a simulation which used the vertical diffusivity output by the 

WLLS hydrodynamic model. The correlation coefficients for all sites (top) 

and sites excluding No. 3 (bottom) are shown for deployment 2, Autumn 

2011. 

FISCM does not have the ability to vary vertical diffusivities at fixed 

rates, so with this particle tracking model the vertical diffusivities 

calculated by FVCOM are used for particle fixed at the surface and particle 

with DVM implemented (Figure 3.5.5). Simulating particle diffusion 

improved model fit when compared with FISCM.  
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Figure 3.5.5 FISCM; heatmap showing model skill (Pearson correlation 

coefficient) for a range of vertical diffusivity (KV) values and for different 

radial distances about the sentinel cage location. The numeric values on the 

x-axis represent parameter coefficients of vertical diffusivity (m2 s-1) used 

in the particle tracking model; the term “variable” represents simulations 

which used the vertical diffusivity output by the FVCOM hydrodynamic 

model, while fixed represents no vertical diffusivity. “DVM on” swimming 

and sinking was set at 1.8 cm s-1. The correlation coefficients for all sites 

(top) and sites excluding No. 3 (bottom) are shown for deployment 2, 

Autumn 2011. 
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Number of Particles, NP 

UnPTRACK nor Biotracker seem to be overly sensitive to the number 

of particles released, except for particularly low values (i.e. less than 5 

particles per source per hour, Figure 3.5.6 – 3.5.7). Conversely results 

improve in FISCM at 50 particles per source per hour (Figure 3.5.8). 

Using fewer particles leads to reduced consistency in results (tested 

in UnPTRACK). Six repeat simulations, using the identical model 

configuration for each particle source rate, led to greater variance around 

the calculated correlation coefficient (r) for smaller numbers of particles 

(Table 3.6.1). This shows that while NP = 2 particles/source/hour may give 

good inference, the results were more variable than when NP was increased 

to 10 or 50 particles/source/hour.  The mean values for the correlation 

coefficient were similar for all three source rates, both radial distances of 

50 m and 100 m and whether Station 3 was included or excluded. However, 

the standard deviation across each repeat set of simulations was markedly 

higher for lower particle numbers. For example, considering all sites and a 

radius of 50 m (results column 1 in Table 3.6.1), the standard deviation in r 

reduces from 0.033 for NP = 2 to 0.005 for NP = 50. Thus using more 

particles makes results more consistent (smaller standard deviation) and 

mean results from a single simulation are more reliable i.e. closer to the 

mean. Conversely results from a single simulation with small numbers of 

particles are less reliable. This is demonstrated in Figure 3.5.6 for sites 

excluding No. 3, where the correlation coefficient for Np = 5 is less than 

that for Np = 2, which is likely to be simply random variation in the results 

with these low particle numbers. 

In practice, as many particles as can be handled within the 

computational limits of the computer should be used (Brickman et al., 2009) 

and the user should always be aware of increasing limitations and 
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uncertainties in model results from single simulations as particle numbers 

are reduced. 

 
Figure 3.5.6 UnPTRACK; heatmap showing model skill (Pearson 

correlation coefficient) for a range of number of particles, NP (particles per 

source per hour), released and for different radial distances about the 

sentinel cage location. The correlation coefficients for all sites (top) and 

sites excluding No. 3 (bottom) are shown for deployment 2, Autumn 2011. 
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Table 3.6.1 Analysis for consistency of results carried out in 

UnPTRACK, 6 repeat simulations with identical model configuration for each 

particle source rate, mean and standard deviation in correlation coefficient. 

Particle Source 
Rate 

Parameter Correlation 
Coefficient r (all 
Sites) 

Correlation 
Coefficient r (Exc 
Site 3) 

(Np/source/hr) 
 

r (50m) r (100m) r (50m) r (100m) 

2 Mean 0.646 0.686 0.822 0.809 
St. Dev. 0.033 0.025 0.019 0.014 

10 Mean 0.658 0.690 0.839 0.815 
St. Dev. 0.017 0.016 0.008 0.005 

50 Mean 0.660 0.695 0.829 0.809 
St. Dev. 0.005 0.004 0.004 0.004 

   

 
Figure 3.5.7 Biotracker; heatmap showing model skill (correlation 

coefficient, r) for a range of number of particles, NP (particles per source per 

hour), released and for different radial distances about the sentinel cage 

location. The correlation coefficients for all sites (top) and sites excluding 

No. 3 (bottom) are shown for deployment 2, Autumn 2011. 
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Figure 3.5.8 FISCM; heatmap showing model skill (correlation 

coefficient, r) for a range of number of particles, NP (particles per source per 

hour), released and for different radial distances about the sentinel cage 

location. The correlation coefficients for all sites (top) and sites excluding 

No. 3 (bottom) are shown for deployment 2, Autumn 2011. 
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Swimming Behaviour 

Swimming behaviour strongly influenced the model performance 

(Figure 3.5.9 and 3.6.10), thus is an important parameter to consider in 

model development. Within UnPTRACK, using “passive” particles with no 

biological behaviour, but subject only to vertical diffusion and vertical 

velocity, produced results with a poor fit to observational data (Figure 

3.5.9). This was also the case in FISCM (Figure 3.5.10). Using a “slow” 

swimming speed of 0.05 cm s-1 (Johnsen et al, 2014; Sandvik et al., 2020) 

for both nauplii and copepodids did not improve model performance in 

UnPTRACK or FISCM. Releasing particles at a “fixed depth” of 1 m provided 

better performance than the “Passive” or “Slow” conditions for UnPTRACK, 

particularly when excluding station No. 3 from the analysis (Figure 3.5.9). 

When excluding station No. 3 from the analysis in FISCM the fixed depth 

runs also saw an improvement in fit (2.6.10). In FISCM the “Slow” swimming 

velocities in the “Shallow DVM”, “Deep DVM”, “No depth limit” and 

“Swimmer with passive sinking” did not provide good model fits (Figure 

3.5.10).   

The best model performance in UnPTRACK was seen for “Fast” 

swimmers (Figure 3.5.9), with upward swimming speeds of 1.25 and 2.14 

cm s-1 from 6am – 6pm for nauplii and copepodids respectively (Brooker et 

al., 2018).  Applying the fast upward swimming speeds over an “extended” 

period from 5am – 7pm, or adding “sinking” (a slow downward velocity of 

0.09 and 0.10 cm s-1 for nauplii and copepodids respectively (Brooker et al., 

2018) at night, produced slightly decreased model performance (Figure 

3.5.9). FISCM, which does not have separate stages for nauplii and 

copepodids, performed best when using the “Fast swimmer with a sinking 

velocity” (Figure 3.5.10).    Combining both “Extended” and “Sinking” in 

UnPTRACK in an “Extended, Sinking” simulation again improved model 

performance somewhat (Figure 3.5.9). This suggests that small scale DVM is 
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an important behaviour in simulating the distribution of sea lice in the 

environment. Further experimental work, improving understanding of 

larval behaviour, for both naupliar and copepodid stages, in the Scottish 

environment would be beneficial. 

 
Figure 3.5.9 UnPTRACK; heatmap showing model skill (Pearson 

correlation coefficient) for different swimming behaviours and for different 

radial distances about the sentinel cage location. The correlation 

coefficients for all sites (top) and sites excluding No. 3 (bottom) are shown 

for deployment 2, Autumn 2011. The different types of swimming 

behaviours are described in the text. 
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Figure 3.5.10 FISCM; heatmap showing model skill (correlation 

coefficient, r) for different swimming behaviours and for different radial 

distances about the sentinel cage location. The correlation coefficients for 

all sites (top) and sites excluding No. 3 (bottom) are shown for deployment 

2, Autumn 2011. The different types of swimming behaviours are described 

in the text. 
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Initial Spread 

Inference from the heat map showing the model skill for the range of 

initial particle positions tested here (Figure 3.5.11), suggests that this input 

parameter is not as influential as other input values, provided that some 

horizontal diffusion is included in the simulation. Without horizontal 

diffusion, the particle trajectories become more deterministic (less 

stochastic) and the initial release location becomes more significant. 

However, most sea lice dispersal models do include horizontal diffusion, so 

the initial spread of the particles at the farm location is not therefore a 

strong influence (given reasonable definitions of the initial spread). 

 
Figure 3.5.11 UnPTRACK; heatmap showing model skill (Pearson 

correlation coefficient) for different initial spread of particles and for 

different radial distances about the sentinel cage location. The correlation 

coefficients for all sites (top) and sites excluding No. 3 (bottom) are shown 

for deployment 2, Autumn 2011. The initial spread,  Δx, is the distance from 

the centre of each source location, X0, within which area particles are 

initially located at random (i.e. Xp = X0 ±  Δx). 
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Source Type 

Simulations were performed with different source types:  Variable, 

Constant, Fixed and COGP (Figure 3.5.12). The “Variable” source utilised the 

weekly lice counts from the Mowi farms during Autumn 2011 and the 

recorded fish numbers, extrapolated to the Scottish Sea Farm Sites by a 

biomass weighting, to provide a time-varying daily source of lice for the 

simulation. The “Constant” source took the total number of lice per site 

released over the simulation from the variable source and calculated a daily 

average rate which was applied. Thus the constant source varied by site, 

but was the same every day. The “Fixed” source rate took the total number 

of lice release over the variable simulation from all sites, and distributed 

them evenly between sites and averaged over time. Thus, each site 

released the same, constant, source of lice. In these three simulations, 

“Variable”, “Constant”, “Fixed”, the same total number of larval lice were 

released into the model domain over the simulation period. The fourth 

simulation, “COGP” used the reported biomass at each site in October 2011, 

converted that to a number of fish using as assumed average fish weight of 

3.33 kg, and applied the Salmon Scotland Code of Good Practice maximum 

lice burden of 0.5 adult female lice per fish to given a number of lice per 

site during the simulation. This approach was to assess, crudely, the 

relevance of using the COGP approach to predict sea lice abundances in 

coastal waters. The COGP method resulted in 10.7% more lice larvae being 

released during the simulation, distributed according to biomass, than the 

first three simulations.  



   
 

56 
 

 

Figure 3.5.12. The “Constant”, “Fixed” and “COGP” sources of lice for the 

sensitivity analysis of source type. 

 

The results from the source type simulations were mixed. When all 

sentinel cage locations were considered, the results from the “Variable” and 

“Constant” simulations produced slightly higher correlation coefficients (at 

the shorter radii of 50m and 100m, Figure 3.5.13). But when station No. 3 

was excluded from the analysis, the “Fixed” source simulation performed 

better than all others. These results may possibly indicate that most of the 

sentinel cage locations were not particularly sensitive to individual sources 

of lice, but that station No. 3 was. 

 



   
 

57 
 

 

Figure 3.5.13 UnPTRACK; heatmap showing model skill (Pearson 

correlation coefficient) for a range of different data source types. Sites 

excluding No. 3 for deployment 2. 

3.6 Lessons learned from sensitivity analysis    

A comprehensive understanding of uncertainties in the projected 

distributions of salmon lice and associated impacts on wild fish is a key 

element in carrying out a robust assessment to allow the aquaculture 

industry to implement the most appropriate mitigation measures. 

Uncertainties arise from various sources in salmon lice model projections, 

such as structural differences in models, differences in initial conditions, 

different hydrodynamic scenarios, varying parameter values, output 
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resolution and bias correction. Further uncertainties arise in observational 

or field data, which can be difficult to quantify. 

The one-at-a-time SA carried out here allows understanding how the 

model outputs which estimate sea lice density in space and time are related 

to and influenced by the input parameters tested above. The analysis 

carried out suggests the particle tracking models are not very sensitive to 

the number of particles released per source per hour. However, as the 

number is reduced below NP = 10, more variance is introduced into 

individual simulations. Additional consideration is needed if inference on 

smaller spatial grids is required, here NP = 10 was deemed appropriate for a 

calculation of densities on a spatial grid of 250 m2.  

The values tested for vertical diffusivity did not strongly impact 

model performance in this system, and a value of KV=0.001 m s-1 is 

appropriate within this model setup. Here the interaction between vertical 

diffusivity and the various swimming behaviour implemented was not 

tested. Implementing swimming behaviour following Brooker et al, (2018), 

provided the best correlation with the field data, suggesting that these 

values are adequate for sea lice swimming behaviour implementation in 

Loch Linnhe. Including a user input parameter that recognises daylight 

hours for a given day of the year or incorporating surface irradiance 

information to drive a subsurface light intensity model that stimulates 

swimming/sinking behaviour (Johnsen et al., 2014) could potentially 

improve the model results.  The source type influences the model 

performance in terms of how well the model correlates to the field data. 

Using the “Variable” option is likely helpful in understanding the actual sea 

lice distributions in space and time, however this information is only 

available after the lice counts have been recorded on the farm. The “COGP” 

source rates may be useful to managers/regulators in understanding the 

likely hotspots for lice in the water column should lice loads on all farms 
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reach these levels. This is helpful for planning, however inference on the 

actual lice loads is more useful in a research context. 

3.7 Comparison of field data with particle tracking outputs  

The three different models were individually validated through 

comparing modelled lice densities against plankton tow data and sentinel 

cage data, for various distances from the samples’ location and a 

qualitative/quantitative model comparison was carried out for four time 

periods (Spring 2011, Autumn 2011, Spring 2013 and Autumn 2013). The 

following outputs were produced from each model; Map of mean lice 

density (lice km-2) and plots showing comparison of modelled density to 

plankton tows at radii of 50m, 100m, 150m, 200m 250m, and 500m; Map 

of mean lice density (lice km-2) and plots showing comparison of modelled 

density to sentinel cages at radii of 50m - 500m; Plots showing comparison 

of modelled infective pressure to sentinel cages at radii of 50m - 500m.  

Key results for a subset of radii tested for each individual model are 

presented in the following sections 3.7.1 - 3.7.3. The sheer amount of data 

generated within this work package means it is not practical to include all 

figures within this report, Appendix 3 contains some of the additional plots. 

For each sample location the mean model lice densities were calculated 

using the lice in the top 2 m depth of the water column for the number of 

days the sentinel cages were deployed (see table 3.4.1 for details of dates). 

The modelled infective lice pressure shows the number of lice integrated 

over the number of days the sentinel cage was deployed. 

3.7.1 BioTracker  

The model comparison with mean lice abundance on sentinel cage for 

each time period from the coupled BioTracker- WLLS model are shown in 

figures 3.7.1.1 – 3.7.1.4.  



   
 

60 
 

In Spring 2011 the average number of lice per sentinel fish was 

between 0.02 and 0.92, the model infective lice density (See Appendix 3) 

and modelled infective lice pressure (Fig. 3.7.1.1) shown below do not show 

a strong linear correlation.  This is not unexpected due to the signal-to-

noise ratio, which limits the ability to detect weak signals (Silver 2012) as 

random variation grows relative to these signals. A similar pattern is seen 

in Spring 2013, with low average number of lice per sentinel fish and a 

poor fit with the linear regression with modelled data (Fig. 3.7.1.3). 

However the numbers of lice on fish are low, when compared to the autumn 

time periods (Fig. 3.7.1.2). Autumn 2013 shows a weaker linear relationship 

between field and modelled data (Fig. 3.7.1.4) than Autumn 2011. This 

suggests there may benefit from additional sensitivity analysis on each 

time period to better describe the relationships, and exploration of 

additional performance metrics as Pearson corelation is only one metric, 

with limitations. 

 
Figure 3.7.1.1: Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the Biotracker PTM for Spring 

2011, using 50m, 75m and 100m radius circles to calculate modelled lice 

infective pressure for Deployments 1 (●), 2 (●) and 3 (●). 
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Figure 3.7.1.2: Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the Biotracker PTM for Autumn 

2011, using 50m, 75m and 100m radius circles to calculate modelled lice 

infective pressure for Deployment 1 (●) and Deployment 2 (●). 

 
Figure 3.7.1.3: Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the Biotracker PTM for Spring 

2013, using 50m, 75m and 100m radius circles to calculate modelled lice 

infective pressure for Deployment 1 (●) and Deployment 2 (●). 

 

 
Figure 3.7.1.4: Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the Biotracker PTM for Autumn 

2013, using 50m, 75m and 100m radius circles to calculate modelled lice 

infective pressure for Deployment 1 (●) and Deployment 2 (●). 
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3.7.2 FISCM 

The model comparison with mean lice abundance on sentinel cage for 

each time period from the coupled FISCM- WLLS model are shown in 

Figures 3.7.2.1 – 3.7.2.4. The results from FISCM-WLLS model show a similar 

pattern to the Biotracker -WLLS, with Spring 2011 and Spring 2013 model 

infective lice density (Appendix 3) and modelled infective lice pressure (Fig. 

3.7.2.1/3.7.2.3) shown below do not show a strong linear correlation.  

Autumn 2013 shows a weaker linear relationship between field and 

modelled data (Fig. 3.7.2.4) than Autumn 2011 (Figure 3.7.2.2).  

 
Figure 3.7.2.1 Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the FISCM PTM for Spring 2011, 

using 50m, 75m and 100m radius circles to calculate modelled lice density 

for Deployments 1 (●), 2 (●) and 3 (●). 

 
Figure 3.7.2.2: Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the FISCM PTM for Autumn 2011, 

using 50m, 75m and 100m radius circles to calculate modelled lice infective 

pressure for Deployment 1 (●) and Deployment 2 (●).  
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Figure 3.7.2.3 Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the FISCM PTM for Spring 2013, 

using 50m, 75m and 100m radius circles to calculate modelled lice infective 

pressure for Deployment 1 (●) and Deployment 2 (●).  

 
Figure 3.7.2.4: Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the FISCM PTM for Autumn 2013, 

using 50m, 75m and 100m radius circles to calculate modelled lice infective 

pressure for Deployment 1 (●) and Deployment 2 (●).  

 

3.7.3 UnPTRACK 

The model comparisons with mean lice abundance on sentinel cage 

for each time period from the coupled UnPTRACK - WLLS model are shown 

in Figures 3.7.3.1 – 3.7.3.4. The results from UnPTRACK-WLLS model show a 

similar pattern to the Biotracker -WLLS model and the FISCM- WLLS model, 

where the Spring 2011 and Spring 2013 model infective lice pressure (Fig 

3.7.3.1/3.7.3.3) do not show a strong linear correlation.  Autumn 2013 

shows a weaker linear relationship between field and modelled data (Fig. 

3.7.3.4) than Autumn 2011 (Figure 2.7.3.2). An additional plot 3.7.3.5 shows 

the combined inference of all four simulations, using a 50m radius circles to 

calculate modelled lice density. 
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Figure 3.7.3.1. Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the UnPTRACK PTM for Spring 

2011, using 50m and 100m radius circles to calculate modelled lice 

infective pressure for Deployments 1 (●), 2 (●) and 3 (●). 

 
Figure 3.7.3.2: Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the UnPTRACK PTM for Autumn 

2011, using 50m and 100m radius circles to calculate modelled lice 

infective pressure for Deployment 1 (●) and Deployment 2 (●).  
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Figure 3.7.3.3. Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the UnPTRACK PTM for Spring 

2013, using 50m and 100m radius circles to calculate modelled lice 

infective pressure for Deployment 1 (●) and Deployment 2 (●). 

 
Figure 3.7.3.4. Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the UnPTRACK PTM for Autumn 

2013, using 50m and 100m radius circles to calculate modelled lice 

infective pressure for Deployment 1 (●) and Deployment 2 (●). 
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Figure 3.7.3.5. Comparison of modelled infective lice pressure with 

mean lice abundance on sentinel fish from the UnPTRACK PTM for all four 

simulations, using a 50m radius circles to calculate modelled pressure. 

 

3.8 Summary of Individual Model Validation  

1) Each model fitted data for lice infestation of salmon in most 

sentinel cages well in Autumn 2011, the time period for which sensitivity 

analysis was undertaken. This suggests that further sensitivity analysis 

should be undertaken to investigate if any sea lice dispersal model 

parameter fits the data better. 

2) Fits depended on signal:noise ratios and therefore best fits were 

when lice on farms was highest. Targeted future sampling in areas that tend 

to have higher lice numbers on farms may be beneficial for further model 

development.  

3) This validation enables the application of particle tracking models 

as tools for management of risk of lice from salmon farms to be considered 

with varying degrees of confidence depending on model fit.  

4) Given multiple models exist, it is necessary either to select the best 

model or combine all or a sub-set of the models as an ensemble to assess 

model uncertainty for application in management. 
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The next section explores how the models can be combined in an ensemble 

and how this process can allow visualisation of how closely models match 

the predictions of each other across space in Loch Linnhe. 

4. Ensemble Modelling  

Robust assessments of sea lice in the environment are important for 

assessing the scale of lice management required on farms, for estimating 

the impact on wild fish populations, and for understanding transfer of lice 

among farms. Hydrodynamic Ocean Circulation Models coupled with 

Lagrangian particle tracking models are an important tool in our 

understanding of sea lice dispersal from fish farms. Sea lice dispersal 

models have been developed in Norway (Sandvik et al. 2016), Scotland 

(Salama et al. 2018), Canada (Nelson et al. 2018), Ireland (Costelloe et al. 

2009) and the Faroe Islands (Kragesteen et al. 2018). Further to these 

nationally developed models, a standardised framework has been agreed 

for sea lice dispersal modelling through international collaboration (Murray 

et al. 2022). Some direct measures of sea lice are available such as lice 

counts from farms. Given challenges in collecting relevant empirical 

information on distributions of lice in the environment, work to date has 

relied on a numerical modelling approach. The availability of multiple 

models necessitates an evaluation of the implications of how they differ in 

predicting lice distributions across space and time. 

In this part of the SPILLS study, the uncertainty in model outputs for 

sea lice dispersal modelling is investigated among a suite of 3 particle 

tracking models coupled with the Wider Loch Linnhe System hydrodynamic 

model to assess model variability. This is important as an understanding of 

uncertainties in the modelled sea lice distributions with respect to sentinel 

cage observations, is a key element in carrying out a robust assessment. 

Thus, in order to gauge the amount of trust we can have in our models we 

measure the types of uncertainty within our model predictions.   
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For this first usage of ensemble modelling in Scottish aquaculture, we 

consider simple ways to describe the types of uncertainty to present final 

outputs in a succinct and intuitive way. Average and weighted ensemble 

models using these individual models are calculated to assess ensemble 

model performance and uncertainty. 

4.1 Ensemble Model Development  

Ensemble modelling is a technique that has the potential to decrease 

bias and variance of predictions from individual models, through combining 

the predictions of different models (Fig. 4.1.1). The approach is used in 

fields such as climate (Tebaldi and Knutti 2007), fisheries management 

(Jardim et al. 2021), and epidemiological (Oidtman et al. 2021) modelling to 

improve understanding and management of uncertainty. The inference from 

a simple ensemble prediction, where all models are weighted equally and 

mean weighted ensemble prediction, where models are weighted based on 

their fit with the observational data sets are both investigated as a proof of 

concept.  

 

Figure 4.1.1: Visualisation showing how models come together to 

form an ensemble model. 

 

To develop the ensemble methods the focus below is on one time 

period, Autumn 2011, for modelled infective pressure calculated at a 100 m 

radius around the sentinel cages (Figure 4.1.2) these figures are akin to the 

prediction 1, 2 and 3 shown in figure 4.1.1. This time period was chosen to 
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help to develop the approach, as it was the time period where the OATSA 

(One At a Time Sensitivity Analysis) was carried out, chosen a priori based 

on the higher mean number of lice per sentinel fish and therefore 

displaying a greater signal-to-noise ratio which minimises the influence of 

random variability. Confidence in the both the hydrodynamic forcing and 

PTM performance for the Autumn 2011 deployment is high, due to the time 

spent on the validation and sensitivity analysis for this time period. Here, 

the three models underwent varying levels of scrutiny through the OATSA, 

all three predict a similar range of values at the sentinel cage locations. 

Additionally, in this instance, the underlying hydrodynamics are the same 

in all three models, so differences between models are due to the particle 

tracking models only. Thus, in this case, we have the opportunity to assess 

if different particle tracking models cause spatial variability in the 

predicted sea lice distributions. This approach should be expanded to 

investigate other time periods, where practical. Table 4.1.1 shows the 

parameter values used in each model considered within the ensemble. We 

use the model with the highest Pearson correlation values at 100m radius 

as developed from each organisation at the time of reporting, using the 

release of 10 particles per source per hour, according to the sensitivity 

analysis undertaken in section 3.5. Further model developments and 

calibration may lead to changes in these parameter values in Table 4.1.1, so 

these should not be considered prescriptive, rather, used as a starting point 

for future work.  It is important to understand that the model outputs in lice 

– days per m2 while observational data are mean lice counts on fish, this 

leads to variation in the relationships to observations between outputs 

from different models, thus further analysis would be beneficial. 
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Figure 4.1.2  Comparison of modelled infective lice pressure with mean lice 

abundance on sentinel fish from each of the three PTM at a 100m radius 

around the cages for Autumn 2011. 95% confidence intervals indicate 

confidence in position of the linear regression.(See section 3.7.1 -3.7.3 for 

more details on different radius or time periods).  

 

Table 4.1.1 : Summary of setup parameters in each dispersal (particle 

tracking) model used in development of ensemble approach. 

Parameter Biotracker 

Value 

Fiscm  

Value 

UnPTRACK  

Value 

Horizontal Diffusivity, KH (m2 s-

1) 

0.1 0 0.1 

Vertical Diffusivity, KV (m2 s-1) 

 

- - Variable 

Initial Spread (m) 

 

0 0 50 

Source Type Variable 

(weekly lice 

counts) 

Variable 

(weekly lice 

counts) 

Variable (weekly 

lice counts) 

Swimming Behaviour (cm s-1) - All particles: 

1.8 cm s-1 

Nauplii: 1.25 cm 

s-1 

Copepodid: 2.14 

cm s-1 

6am – 6pm 

Sinking Behaviour (cm s-1) - All particles: 

1.8 cm s-1 

Nauplii: 0.09  cm 

s-1 
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Copepodid: 0.10 

cm s-1 

 

6pm – 6am 

Low-Salinity Avoidance 

Threshold (PSU) 

- - 20 

Maturation rate  86 hrs 86 hrs 40 degree-days 

Time step (s) 120 s 30 s 600 s (with sub-

stepping when 

required) 

Particle source rate (Np per 

farm per hour) 

10 10 10 

Mortality constant (h-1) 0.01 0.01 0.01 

Depth Limit (m) 1 20 50 

Settlement time  336 hrs 336 hrs 170 degree-days 

 

Relationships between predicted lice in the water column (infective 

pressure, lice-days.m-2) in 100m radius around sentinel cages and actual 

mean number on fish held in sentinel cages are compared for the three 

different particle tracking models in Fig 4.1.2 (note the different axes 

scales). The UnPTRACK and BioTracker models are broadly similar whereas 

the slope of the FISCM model may be steeper, such that if the mean alone is 

used, it tends to be more conservative- predicting lower infective pressures 

than the other two models. The FISCM model is non-significant and has a 

relatively low correlation coefficient. However, it is notable that a single 

cage appears to be an outlier that tends to reduce the slope, resulting in an 

uneven distribution of residuals at the lower end of the regression fit, this 

reduces the correlation coefficient. For FISCM particularly, further work is 

recommended to explore potential causes of such outlying points, 

additional modelling is required to fully incorporate the lessons learned 

from the sensitivity analysis. Additional calibration of the FISCM modelling 

algorithm is also needed, as this model was originally designed for a 

different particle tracking application in a different system. Model 

calibration and validation are key steps which should be undertaken prior 

to using any particle tracking model as a decision making tool.    
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Two versions of the ensemble model were calculated using the 

predictions shown in Figure 4.1.2. The first was a simple mean, in this 

version all models were weighted equally, the second was a weighted 

mean, where each model was weighted according to the variance explained 

by the modelled (r value). Figure 4.1.3 shows the normalized values for 

these ensembles, these values are then back calculated to reflect the mean 

range of values within the models (min= 0.047, max = 8.15). Here the two 

versions of the ensemble models are showing  a very similar range and 

very similar results. Where this becomes important is when models present 

very different ranges within a system and decision makers need to 

understand the potential consequence of using one model over another. The 

mean weighted ensemble approach provides a marginally better R value 

and p-value  than the simple mean model.  

  

  
Figure 4.1.3 Calculating a simple mean ensemble and a weighted 

mean ensemble using predicted values shows in figure 4.1.2 by normalizing 

the data to calculate the mean values first and then translating that into a 

predicted value for Autumn 2011. 95% confidence intervals around the 

linear regression (blue line) shown in grey. 
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4.2 Evaluation of Ensemble Approach   

Visualising the variance around the mean values in the ensemble is 

one way to think about the uncertainty for decision making. Maps showing 

the predicted density or prevalence of particles are the output of interest 

from the bio-physical modelling exercise for managers and scientists. An 

assessment of similarity in the spatial predications between the mean 

ensemble model prediction and the three individual model predictions 

allows us to assess the spatial uncertainty in the predictions. 

The uncertainty from the three coupled hydrodynamic-dispersal 

models were assessed by (i) comparing predicted lice densities/infection-

pressure generated by each model with relevant field data (see section 3.7 

and Figure 4.2.1), (ii) individual model comparisons with ensemble model 

output (Figure 4.2.1) and (iii) comparing the individual maps of infective 

pressure to the ensemble map of infective pressure (Figure 4.2.3).   

In the evaluation of model fit, the average lice abundance on sentinel 

fish per cage per deployment is used. In each cage the aim was to sample 

50 fish, in reality between 20 and 50 fish could be sampled due to avian 

and seal predation. The variance around the mean in each cage for each 

deployment is not represented in the evaluation of model fit shown in 

Figure 4.1.3 To provide context the field data showing the number of lice 

counted on each individual sentinel fish in each cage for each deployment is 

plotted beside the models predicted values and the confidence intervals 

(Figure 4.2.1).  
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Figure 4.2.1 Qualitative comparison of PTM outputs at a 100m radius 

around the cage with field data for the deployment in Autumn 2011. Mean 

lice abundance on sentinel fish represented with black horizontal line. The 

number of lice counted on each individual sentinel fish represented by 

black open circles. The predicted mean lice abundance on sentinel fish is 

represented by small coloured horizontal line and upper and lower 95% 

confidence interval values show with *Mean ensemble results are shown in 

red, UnPTRACK model prediction results are in blue, FISCM model prediction 

in yellow, and BioTracker model prediction in grey. Each individual model is 

fitted using its unique relationship between lice in the water column and 

lice on sentinel fish illustrated in Figure 4.1.2. The mean and weighted-

mean fits are from models specified in Figure 4.1.3.  

 

The ensemble prediction models are doing a good job at predicting 

the lice abundance on sentinel fish at many of the sentinel cage locations, 

highlighting that generally we are able to represent lice in the environment. 

For cage 3, deployment 2 the models all underestimated the number of lice 

on sentinel fish, while at cage 9, deployment 2 the Mean Ensemble, 

UnPTRACK model prediction and BioTracker model prediction model 

overestimated the number of lice on sentinel fish. This highlights that 

sentinel cages in highly dynamic areas may not always be well represented 

by any model.  For each of these model outputs the relationship between 

infective pressure lice – days per m2 and lice counts on sentinel fish are 

different. And so the models all replicate the pattern of variation in sentinel 
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cage observations even though they vary in predictions of infective 

pressure.  

Figure 4.2.1 highlights the variance around mean in the field data is 

well represented in the models. This suggests that the models are generally 

well calibrated. This, coupled with the sensitivity analysis undertaken, gives 

a good understanding of how the parameters individually impact the model 

outputs.  The sea lice dispersal models individually are able to predict the 

distribution of sea lice in the environment. The ensemble as presented here 

helps to contextualise the level of variability in the different models, 

providing understanding of areas where the models are not in agreement. 

This approach becomes important when validation against field data is not 

possible, for example for future predictions or areas where data are not 

available. In this case, as the models do provide similar fits to sentinel data, 

this should lead to higher confidence in decision making. Conversely if all 

three models provided very different ranges and there were no data 

available to validate them, then decision makers should have lower 

confidence in the models.   

In order to assess the geographical consistency between pairs 

of maps, a Pearson's correlation metric was applied. This is 

a spatially explicit metric comparing the local correlation coefficient 

between two maps using a focal neighbourhood search (n=5). The “corLocal” 

function from the “raster” package in R (Hijmans 2020) was used.  The 

closer correlation coefficients get to -1.0 or 1.0, the stronger the agreement 

between the two individual data sets. This helps in understanding where in 

space differences occur in model outputs. Figure 4.2.2 and 4.2.3 show areas 

where all models have similar predictions to the ensemble mean values 

(green to blue areas), thus giving higher confidence in the models predictive 

ability. Conversely, there are areas where models differ significantly from 

the ensemble mean values (yellow to red), in these there is less confidence 
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in the individual models predictive ability. Understanding the variation in 

geographical consistency between models output may help to inform 

future sampling strategies. 

   
Figure 4.2.2 Deployment 1 showing each individual model 

geographical consistency with mean ensemble. The pearson’s 

correlation provides an estimate of the strength of the linear relationship 

between two variables. Correlation coefficients range from -1.0 (a perfect 

negative correlation) to positive 1.0 (a perfect positive correlation). Values 

of p = > 0.05 are generally considered significant, these areas are outlined 

in black. Appendix 4 provides larger versions of these plots. 

   
Figure 4.2.3 Deployment 2 each individual model 

geographical consistency with mean ensemble. The pearson’s 

correlation provides an estimate of the strength of the linear relationship 

between two variables. Correlation coefficients range from -1.0 (a perfect 

negative correlation) to positive 1.0 (a perfect positive correlation). Values 

of p = > 0.05 are generally considered significant, these areas are outlined 

in black. Appendix 4 provides larger versions of these plots. 
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Each of the dispersal models has been developed by 

different organisations and each has its own assumptions and limitations. 

All models have used the same oceanographic forcing. However, the 

biological conditions to simulate their sea lice dispersal rates differ. This 

allows direct comparison of each PTM’s results on the sea lice survival and 

movement within the study area.  Using Figure 4.2.1 we can assess the 

range of values predicated by the ensemble and assess what that means in 

relation to each individual PTM. Figure 4.2.2 and 4.2.3 can be used to 

further infer areas of high and low agreement in space, for given time 

periods, here averaged over the sentinel cage deployment period.  

4.3 Lessons learned from applying ensemble approach  

Quantifying model uncertainty using an ensemble approach is 

possible. We have multiple models which have given similar fits to sentinel 

cage data for the same scenario. These models all have reasonable 

parameter estimates. Each model has predicted the observed data well 

(Figure 4.2.2), this is promising given the uncertainty in the source data. 

Models always need refinement, and these sea lice dispersal models 

would benefit from further validation with contemporary data. This is a 

reason to collect more field data in an open and systematic way, to better 

support sustainable growth of the aquaculture industry.  

There is measurement error in the sentinel cage data, and there is 

some inherent randomness in the system that we have not fully quantified. 

There is some natural variation in space and time. Combining results from 

the sensitivity analysis (i.e. using this information to infer if models are 

likely to be well calibrated) and the ensemble results (i.e. do models give 

similar results) with expert opinion (i.e. consider the quantitative rigour of 

our models, individually and as an ensemble) and insight about other 

potentially relevant factors outside of the models (historical data, 

unknowns about the source lice etc.) to make an assessment of model 
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selection is necessary, particularly in the short term, as a data set for 

validation is built up in Scottish waters.   

5. Conclusions and Next Steps   

5.1 Hydrodynamic modelling for sea lice particle tracking 

• The quality and resolution of the underlying hydrodynamic 

model is the singularly most important component of a particle-tracking 

model.   Different parameterisations of the underlying HDM resulted in 

different fits to observational oceanographic data. The version finally 

adopted was the one which presented the best bit of field measurements. 

5.2 Sea lice particle tracking models  

- The importance of calibrating the different PTMs with some 

simple test case prior to the scenarios simulation, to make sure the basic 

model performance is good, should not be underestimated.  

- Careful consideration  of the specificity of each PTM and how 

they are suitable for sea lice modelling should be made: 

• Land boundary conditions (restoring behaviour vs reflecting 

behaviour vs sub-timestep method when nearing land 

boundary), which one is the best for sea lice modelling needs to 

be explored. 

• Spherical vs cartesian coordinates – cartesian coordinates are 

more suitable for the SPILLS spatial scales whereas spherical 

coordinates are acceptable for larger scale simulations.  

- Fiscm performance is the lowest of all models, a lot has been learnt 

on how it is coded and some things have already been improved during 

SPILLS. Some others identified problems are: 

• Land boundary handling needs to be revised 
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• Extra care needs to be taken to know what forcing variables 

are given as input of the particle tracking simulation. After the 

Fiscm simulation were performed and the data post processed, 

we realised that Fiscm was not reading the same time variable 

as Biotracker and UnPTRACK from the hydrodynamic model. 

The time variable read by Fiscm was not as precise as the one 

used by Biotracker and UnPTRACK, so Fiscm did not consider 

the velocity field forcing at the exact same time as Biotracker 

and UnPTRACK were doing, which would have an impact on the 

particle trajectories, but the exact magnitude of the has not yet 

been quantified. 

• Some difference between models in the handling of the vertical 

dimension has been identified. These will likely make a 

difference when doing the interpolation of the hydrodynamic 

velocity forcing to compute the particle trajectory. 

• Fiscm Runge Kutta solver uses sigma coordinates, if the 

particles’ initial position is given with z-coordinates they will 

be converted to sigma coordinates. On the contrary, UnPTRACK 

can do the computation with either z-coordinates or sigma 

coordinates depending on the coordinates chosen for the 

particles’ initial position. 

• Fiscm uses z-coordinates with z=0 at mean sea level while 

UnPTRACK set z=0 at the moving free sea surface. 

5.3 Using an ensemble model approach to quantify model 

uncertainty 

Within SPILLS a sensitivity analysis was carried out. This has 

improved the understanding of important modelling parameters and 

highlighted areas where further research could further reduce uncertainty 

and thus aid decision making. The ensemble model was developed by 
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selecting the best fit research models from each PTM. These 3 models 

predicted 3 different “modelled infective pressure (lice days m-2)” ranges, 

with 3 different linear equations representing the relationship between the 

modelled infective pressure and the number of lice on sentinel cage fish. 

This provides a measure of uncertainty around the model performance for 

the Autumn 2011 time period.  

Figure 5.2.1: Example of modelled infective lice density from the Biotracker 

PTM for Autumn 2011 (see Table 3.4.1 for dates). 

The purpose of sea lice dispersal models is to represent the dispersal 

of sea lice from sources of origin as accurately as necessary for a given 

criteria. Every modelling decision involves aspects of aggregation and 

exclusions. Generally, aggregations are required to provide a simplified 

representation of a complex real-world problem, while exclusions can be 

used to omit a portion not important to the modelling objectives. For 

example, within SPILLS the inclusion of linking a population model to our 

sea lice dispersal models was not explored, as the primary objectives were 

to calibrate and validate our PTMs.  In the context of sea lice modelling, 

aggregations over various spatial and temporal scales are necessary to 

represent a manageable view of the highly dynamic (in time and space) sea 

lice infestation pressure. Here figures representing modelled lice infective 

pressure over timescales relevant to sentinel deployments (generally 
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averaged over 1 week, e.g., figure 5.2.1) have been produced. Additionally, 

maps showing predicted lice density over a 12-hour period to compare with 

our plankton tow data were drawn. These average plots do not allow the 

viewer to develop an understanding of the patchy distributions of sea lice 

in the environment, so videos showing hourly locations of sea lice have also 

been produced.  

Using plots showing geographical consistency (Figs 4.2.3 & 4.2.4) 

along with density (e.g. Fig. 5.2.1) or prevalence maps we can begin to 

answer the following questions:    

i. Where do we have high confidence that lice persist because prevalence 

of lice is high across all models? Where do we have high 

confidence that lice do not persist because prevalence of lice is 

low across all models?   

ii. Where do we have high confidence that high densities of lice persist 

(i.e., density is consistently high across all models)?   

iii. Where do we have high confidence that low densities of lice persist?  

iv. What areas in the models show inconsistent results, thus low 

confidence in the models (where do we have low agreement between 

model runs)?   

This work represents the first step in developing ensemble modelling 

for describing sea lice distributions. More work is needed to develop this 

ensemble approach for management purposes, but this report and the 

lessons learned through SPILLS will help to drive the next steps. 
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7. Appendix 1 – Details of Field Data  

 

Figure S1.1 Time series of lice scaler for four simulation periods.  

Table S1.2 The plankton sampling locations used in the 2011-2013 field 

study. Data sets can be found and downloaded from Pert et al. (2021)  

Plankton 
Station 
Number 

Latitude (DDM) Longitude (DDM) 

1 56° 50.33.954 N  5° 7.40.39 W   

2 56° 50.23.924 N 5° 7.49.508 W   

3 56° 50.15.718 N  5° 7.54.067 W   

4 56° 49.26.483 N  5° 7.21.243 W   

5 56° 49.23.748 N 5° 7.6.655 W   

6 56° 49.20.101 N  5° 6.54.802 W   

7 56° 48.21.747 N 5° 8.54.243 W    

8 56° 48.10.806 N  5° 8.39.655 W   

9 56° 48.1.689 N 5° 8.24.155 W   

10 56° 46.58.777 N  5° 11.16.479 W 

11 56° 46.32.335 N  5° 10.54.597 W   

12 56° 46.15.012 N 5° 10.34.538 W    

13 56° 44.52.952 N  5° 13.55.127 W   

14 56° 44.35.629 N 5° 13.36.892 W    

15 56° 44.18.305 N  5° 13.8.627 W  

16 56° 42.48.952 N  5° 15.8.98 W  

17 56° 42.42.57 N 5° 14.42.539 W    

18 56° 42.1.54 N  5° 13.22.303 W   
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19 56° 41.42.393 N  5° 13.19.568 W   

20 56° 41.20.51 N 5° 13.17.744 W    

21 56° 41.58.805 N  5° 11.12.832 W   

22 56° 42.22.511 N  5° 17.40.334 W   

23 56° 38.37.304 N 5° 18.4.951 W    

24 56° 34.53.921 N  5° 22.55.806 W   

25 56° 36.54.274 N 5° 31.3.602 W    

26 56° 35.39.509 N  5° 29.56.131 W   

27 56° 34.50.091 N 5° 29.2.336 W    

28 56° 33.57.209 N 5° 28.15.836 W    

29 56° 32.47.003 N  5° 24.59.806 W   

30 56° 29.27.325 N  5° 25.3.453 W   

31 56° 29.5.443 N  5° 27.19.307 W   

 

Table S1.3. The sentinel cage locations used in the 2011-2013 field study. 

Site 3a was moved after the first samples were collected in May 2011. Site 7 did 

not produce any samples as it was too difficult due to the current speeds. Data sets 

can be found and downloaded from Pert et al. (2021).  

Site 

Number    
Site_Name    Latitude 

(DDM)    
Longitude 

(DDM)    
Longitude    Latitude    Depth 

(m)    
1    Head of Loch 

Linnhe (Corpach)    
56o 50.184N    5o 06.721W    -5.112    56.836    8    

2    North of the 

Corran narrows    
56o 44.143N    5o 14.949W    -5.249    56.736    12    

3a    South of the 

Corran narrows    
    

56o 42. 612N    5o 15. 509W            8    

3b    West of Sallachan 

point    
56° 42.292N    5° 17.684W    -5.295    56.709    12    

4    Ballachuish Bay 

(off from Onich 

hotel)    

56o 42.032N    5o 12.783W    -5.213    56.701    20    

5    Inversanda Bay    56o 40.992N    5o 20.919W    -5.349    56.683    7    

6    Cuil Bay    56o 38.876N    5o 19.122W    -5.319    56.648    16    

7    Shuna Island    56o 35. 254N    
    

5o 23. 049W            12    

8    Loch a’Choire 

(east of 

Kingarloch)    

56o 36.546N    5o 30.021W    -5.500    56.609    17    

9    Camas Nathais    56o 28.959N    5o 27.667W    -5.461    56.483    13    

10    Rubha 

a’Mhothair    
56o 30.841N    5o 37.955W    -5.633    56.514    9 - 

22    
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8. Appendix 2 – Additional hydrodynamic model 

validation figures 

'Gorsten Jan 2013', 'Gorsten North Jan 2013' 

Figure S2.1: Comparison of measured near surface current speeds from RDCP 

deployed near Kilmalieu in Apr 2011 with the modelled near surface currents from 

WLLS hindcast A. 
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Figure S2.2: Comparison of measured near surface current speeds from RDCP 

deployed near Kilmalieu in Apr 2011 with the modelled near surface currents from 

WLLS hindcast B. 

Figure S2.3: Comparison of measured near surface current speeds from RDCP 

deployed near Gearradh in Apr 2012 with the modelled near surface currents from 

WLLS hindcast M. 
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Figure S2.4: Comparison of measured near surface current speeds from RDCP 

deployed near Gearradh in Oct 2012 with the modelled near surface currents from 

WLLS hindcast M. 

Figure S2.5: Comparison of measured near surface current speeds from RDCP 

deployed near Corran in Jan 2013 with the modelled near surface currents from 

WLLS hindcast M. 
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Figure S2.6: Comparison of measured near surface current speeds from RDCP 

deployed near Gorsten in Jan 2013 with the modelled near surface currents from 

WLLS hindcast M. 

Figure S2.7: Comparison of measured near surface current speeds from RDCP 

deployed near Gorsten (Gorsten North) in Mar 2013 with the modelled near 

surface currents from WLLS hindcast M. 
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9. Appendix 3 – Additional sea lice dispersal model 

figures 

 
Figure S3.1: Comparison of modelled infective lice density with mean lice 

abundance on sentinel fish from the Biotracker PTM for Spring 2011, using 50 m, 

75 m and 100 m radius circles to calculate modelled lice density for Deployments 

1 (●), 2 (●) and 3 (●).  

 
Figure S3.2: Comparison of modelled infective lice density with mean lice 

abundance on sentinel fish from the Biotracker PTM for Autumn 2011, using 50m, 

75m and 100m radius circles to calculate modelled lice density for Deployment 1 

(●) and Deployment 2 (●).  

 
Figure S3.3: Comparison of modelled infective lice density with mean lice 

abundance on sentinel fish from the Biotracker PTM for Spring 2013, using 50m, 

75m and 100m radius circles to calculate modelled lice density for Deployment 1 

(●) and Deployment 2 (●).  
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Figure S3.4: Comparison of modelled infective lice density with mean lice 

abundance on sentinel fish from the Biotracker PTM for Autumn 2013, using 50m, 

75m and 100m radius circles to calculate modelled lice density for Deployment 1 

(●) and Deployment 2 (●).  

 

 
Figure S3.5: Comparison of modelled infective lice density with mean lice 

abundance on sentinel fish from the FISCM PTM for Spring 2011, using 50m, 75m 

and 100m radius circles to calculate modelled lice density for Deployments 1 (●), 2 

(●) and 3 (●). 

 
Figure S3.6: Comparison of modelled infective lice density with mean lice 

abundance on sentinel fish from the FISCM PTM for Spring 2013, using 50m, 75m 

and 100m radius circles to calculate modelled lice density for Deployment 1 (●) 

and Deployment 2 (●).  
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Figure S3.7: Comparison of modelled infective lice density with mean lice 

abundance on sentinel fish from the FISCM PTM for Autumn 2013, using 50m, 75m 

and 100m radius circles to calculate modelled lice density for Deployment 1 (●) 

and Deployment 2 (●).  

 

 
Figure S3.8: Comparison of modelled mean infective lice density with mean 

lice abundance on sentinel fish from the UnPTRACK PTM for Spring 2011, using 

50m and 100m radius circles to calculate modelled lice density for Deployment 1 

(●) and Deployment 2 (●). 
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Figure S3.9: Comparison of modelled mean infective lice density with mean 

lice abundance on sentinel fish from the UnPTRACK PTM for Autumn 2011, using 

50m and 100m radius circles to calculate modelled lice density for Deployment 1 

(●) and Deployment 2 (●). 

 

 
Figure S3.10: Comparison of modelled mean infective lice density with 

mean lice abundance on sentinel fish from the UnPTRACK PTM for Spring 2013, 

using 50m and 100m radius circles to calculate modelled lice density for 

Deployment 1 (●) and Deployment 2 (●). 

 

 
Figure S3.11: Comparison of modelled mean infective lice density with 

mean lice abundance on sentinel fish from the UnPTRACK PTM for Autumn 2013, 

using 50m and 100m radius circles to calculate modelled lice density for 

Deployment 1 (●) and Deployment 2 (●). 
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Figure S3.12: Average modelled lice density from the Biotracker PTM for the 

duration of the first deployment of sentinel cages in Autumn 2011 

 
Figure S3.13: Average modelled lice density from the Biotracker PTM for the 

duration of the second deployment of sentinel cages in Autumn 2011. 
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Figure S3.14: Average modelled lice density from the UnPTRACK PTM for 

the duration of the first deployment of sentinel cages in Autumn 2011 

 
Figure S3.15: Average modelled lice density from the UnPTRACK PTM for 

the duration of the second deployment of sentinel cages in Autumn 2011. 
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10. Appendix 4 –Geographically Consistency Figures 

(Large Version) 
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Figure S4.1: Deployment 1 showing MSS FISCM model 

geographical consistency with mean ensemble for deployment 1 and 2. The 

pearson’s correlation provides an estimate of the strength of the linear 

relationship between two variables. Values of p = > 0.05 are generally 

considered significant, these areas are outlined in black. These figures are 

larger version of those shown in section 4.2. 
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Figure S4.2: Deployment 1 showing SAMS BioTracker model 

geographical consistency with mean ensemble for deployment 1 and 2.. The 

pearson’s correlation provides an estimate of the strength of the linear 

relationship between two variables. Values of p = > 0.05 are generally 

considered significant, these areas are outlined in black.  These figures are 

larger version of those shown in section 4.2. 
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Figure S4.2: Deployment 1 showing MOWI’s UnPTRACK model 

geographical consistency with mean ensemble for deployment 1 and 2.. The 

pearson’s correlation provides an estimate of the strength of the linear 

relationship between two variables. Values of p = > 0.05 are generally 

considered significant, these areas are outlined in black. These figures are 

larger version of those shown in section 4.2. 

 
 

 

 

 

 



   
 

108 
 

 

 


