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1. Executive Summary   

The report describes simulations of sea lice dispersal in the area 

around Shuna Sound (See section 1.3 for details), carried out using various 

combinations of hydrodynamic models (HDM) and particle tracking models 

(PTM), principally: 

i) Wider Loch Linnhe System (WLLS) HDM + FISCM PTM (Marine 

Scotland) 

ii) WestCOMS HDM + BioTracker PTM (SAMS) 

iii) WLLSshuna HDM + UnPTRACK PTM (Mowi Scotland Ltd) 

The model configurations were used to investigate the potential 

variability in dispersal patterns of sea lice in Shuna Sound, with a focus on 

the field sampling season of 2021 (see Work Package (WP) 3 Reinardy et al., 

2023). The dispersal models used weekly adult female lice counts and fish 

numbers from eight farms in the Sound to provide the source of lice larvae. 

The resulting modelled distributions of infective lice larvae in the water 

column were compared to monthly planktonic sea lice sampling at six 

locations (Reinardy et al., 2023). 

Comparisons between the predicted lice densities from all model 

combinations and the observed planktonic lice densities were all 

quantitatively poor. The data were heavily zero-inflated, as discussed by 

Reinardy et al. (2023). In contrast, whilst predicted densities at the sample 

locations were zero (or very low) more than 50% of the time, the modelled 

lice densities were also often non-zero. The cause of the poor agreement 

between model results and planktonic lice data is thought to be high spatial 

and temporal variability in larval lice distributions, making accurate 

prediction extremely challenging. High spatial and temporal variability in 

sea lice larvae distributions is not unexpected, given that the larvae are 

thought to proactively stay at the sea surface (at least during daylight 
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hours) and are therefore subject to complex ocean dynamics arising from 

the combination of tidal, wind-driven and freshwater-driven dynamics, 

likely accumulating at fronts and being advected around the coastal zone 

by winds and tides. Similar findings and conclusions regarding the high 

spatiotemporal variability of sea lice distributions were reported by 

Skarðhamar et al. (2019). 

Plankton sampling using traditional methods does not, therefore, 

currently appear to provide robust datasets for model calibration and 

validation. The apparent very high temporal and spatial variability of sea 

lice distributions demands (an unachievable level of) pinpoint accuracy 

from models in order to deliver positive relationships between the 

observed and modelled sea lice larval density. Field sampling of planktonic 

sea lice requires innovations in methodology (Bui et al., 2021), and 

dramatically upscaled sampling/analytical capacity, before adequate in situ 

data for model calibration can become available. 

Outcomes from sea lice dispersal models depend fundamentally on 

the underlying hydrodynamic model. Sea lice larvae are transported around 

the coastal zone for approximately 15 days. Over these time scales, 

lagrangian modelling can integrate small differences in modelled velocity 

into large differences in individual larval transport pathways and 

potentially radically different predicted infective sea lice distributions. The 

use of different hydrodynamic models, even with identical sea lice dispersal 

models, resulted in different predicted distributions of lice.  

Combining the results from a number of model runs into an 

ensemble-mean smoothed out some of the idiosyncrasies of particular 

model runs and illustrated regions of the domain where the results were 

more consistent, at both high and low densities. The ensemble 

methodology, explored more fully in WP4 (Moriarty et al. 2022), allowed 

some interpretation of the uncertainty of model predictions to be made. 
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Based on the results here, the ensemble approach seems particularly 

pertinent for the hydrodynamic model outputs, which led to substantial 

differences between predicted sea lice distributions.  The challenges 

involved in incorporating ensemble methods into a management and 

regulatory regime are recognised. Nevertheless, where multiple predictions 

of sea lice distributions using different hydrodynamic models are made, 

some effort to assess the relative robustness of the results will be 

necessary. 

1.1 Description of work package & its importance 

There has recently been an increasing emphasis on the use of 

modelling approaches to investigate the potential impacts of aquaculture 

activities on the near shore environment (Scottish Environmental 

Protection Agency 2019). Modelling is a necessary tool due to challenges in 

directly monitoring particular impacts, but also in assessing potential 

responses of the system to changes in environmental conditions. 

A particular environmental challenge presented by aquaculture is that 

of sea lice (Costelloe et al.  2009). These small parasitic organisms can infest 

both farmed and wild populations of salmon, potentially moving large 

distances during a pelagic larval phase of around 14 days (Adams et al. 

2012). Sea lice can cause a wide range of impacts on host fish, particularly 

if they reach high densities. As such, their management and control is a key 

topic for aquaculture regulation. Lice are found on wild salmonid 

populations, but due to the numbers of fish stocked in farms, farm-sourced 

lice almost certainly greatly outnumber wild-sourced lice in the water 

column. 

Tracking lice infestations in the wild is challenging due to the large 

numbers of larvae that are produced, the long distances they travel, and the 

low (and patchy) densities at which they are found in the water column. 

Identifying sources of larval lice is also difficult due to the high levels of 
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mixing between larvae releases from natal populations. As a result, 

biophysical models are a fundamental tool in understanding their spread, 

and the resulting impacts on farmed and wild fish.  

1.2 Description of overall work package goals 

A range of hydrodynamic models have been developed in recent 

years, with a notable improvement in the ability to predict water 

movements in complex coastal environments becoming possible through 

the increased use of unstructured meshes by finite volume and finite 

element models. Flow fields from these models can be used to drive particle 

tracking models to predict the dispersal of sea lice larvae from farm sites. 

Specific examples of such models which have been developed for the 

Scottish west coast environment are WestCOMS (Aleynik et al. 2016) and 

the Scottish Shelf Model (SSM) (Wolf et al. 2016), both of which are based 

on the Finite Volume Coastal Ocean Model (FVCOM, Chen et al. 2003). Other 

general-purpose hydrodynamic models, such as the River and Coastal Ocean 

Model (RiCOM), which uses mixed finite volume and finite element methods 

(Walters, 2005a), and the Danish Hydraulic Institute model MIKE 

(https://www.mikepoweredbydhi.com/ ), have also been applied to Scottish 

coastal waters. However, there remains a need to understand the 

robustness of model outputs, both in terms of how results derived using 

one model compare with another, but also in quantifying the variability 

predicted as a result of changes in meteorological and other forcing. For 

example, most hydrodynamic model applications are driven by time-

specific meteorological forcing, whereas the primary products of the SSM 

are “climatological”, being forced by a 25-year average meteorology; in this 

work package, both year-specific and climatological SSM outputs were used 

in order to assess the effects of the time specific versus climatological 

meteorological forcing. Understanding the implications of using these 

different forcing methods for sea lice dispersal predictions is of great 

https://www.mikepoweredbydhi.com/
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interest to regulators and industry alike. In order to assist in validating the 

outputs of the models developed, the SPILLS project carried out a long 

season of field sampling for sea lice larval stages in Shuna Sound area 

(Figure 1.1) on the west coast of Scotland, in April-October 2021 (see Work 

Package 3). This is used to help determine the utility of the different models 

developed in predicting sea lice infestation pressure and the potential 

threat to wild fish in the area.  

1.3 Overview of Study Area – Shuna Sound  

The domain for this study was Shuna Sound, which is located on the 

southern portion of the west coast of Scotland (Figure 1.1). This is a 

complex area of fjordic sea lochs, islands and constrictions with strong tidal 

movements, including the well-known Gulf of Corryvreckan on the western 

edge. The area plays host to 8 fish farm sites, which are managed by two 

operators, Mowi Scotland Limited and Kames Fish Farming Limited. The 

locations and consented biomass at each site are listed in Table 1.1.  

 

  

Figure 1.1: Study area at Shuna Sound, on the west coast of Scotland (left), with the 

locations of the local salmon farms shown on the right. The farm at Eilean Coltair was not 

operational during the study period. 
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Table 1.1. Site coordinates and consented biomass for the eight active fish farms in 

Shuna Sound system used in the modelling study.   

Site Easting Northing Consented Biomass 

 (Tonnes) 

Kames Bay East 182380 711720 250 

Kames Bay West 182100 711700 205 

Shuna Castle 177500 709600 894.9 

Shuna SW 175600 707500 2500 

Port Na Cro 176000 709700 1000 

Port Na Gille 177600 708100 2262 

BDNC 177400 704600 3000 

North Moine 180500 701500 1238 
 

2. Hydrodynamic Modelling in Shuna Sound  

2.1 Description of Hydrodynamic Models  

2.1.1 WLLSshuna 

WLLSshuna is an implementation of RiCOM (River and Coastal Ocean 

Model), a general-purpose hydrodynamics and transport model, which 

solves the standard Reynolds-averaged Navier-Stokes equation (RANS) and 

the incompressibility condition, applying the hydrostatic and Boussinesq 

approximations. RiCOM has been tested on a variety of benchmarks against 

both analytical and experimental data sets (e.g., Walters & Casulli 1998; 

Walters 2005a, b). The model has been previously used to investigate the 

inundation risk from tsunamis and storm surge on the New Zealand 

coastline (Walters 2005a; Gillibrand et al. 2011; Lane et al. 2011), to study 

tidal currents in high energy tidal environments (Walters et al. 2010) and, 

more recently, to study tidal energy resource (Plew & Stevens 2013; 

Walters et al. 2013; Walters 2016) and the effects of energy extraction on 

the ambient environment in Scotland (McIlvenny et al. 2016; Gillibrand et 

al. 2016b). 

The model solves the three-dimensional (3D) shallow water 

equations, derived from the Reynolds-averaged Navier-Stokes equations 
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using the hydrostatic assumption and the Boussinesq approximation. The 

continuity equation for incompressible flows is used to solve for the 

vertical velocity, and the free surface equation is formed by vertically 

integrating the continuity equation and applying the kinematic free surface 

and bottom boundary conditions. The equations are discretized on an 

unstructured grid of triangular elements using mixed finite element and 

finite volume methods.  This approach permits greater resolution of 

complex coastlines. The model is forced by a tidal open boundary condition, 

wind forcing applied as a surface stress and freshwater inputs at point 

sources along the coast. 

The momentum and free surface equations are solved using semi-

implicit techniques to optimize solution time and avoid the CFL stability 

constraint (Walters 2016). The material derivative is discretized using semi-

Lagrangian methods to remove stability constraints on advection (Walters 

et al. 2008). The Coriolis term is solved using a 3rd order Adams-Bashforth 

method (Walters et al. 2009). Full details of the model discretization and 

solution methods can be found in Walters et al. (2013) and Walters (2016). 

The solution methods provide a fast, accurate and robust code that runs 

efficiently on multi-core desktop workstations with shared memory using 

OpenMP. 

For this work package, RiCOM (WLLSshuna) was applied in 3D mode 

using a modified adaptation of the WLLS mesh (see §2.1.3) with 10 layers in 

the vertical. The node spacing varies from about 25m within Loch Linnhe to 

approximately 6 km along the open boundary. The model was forced along 

its open boundary by eight tidal constituents (O1, K1, Q1, P1, M2, S2, N2, K2), 

amplitudes and phase of which were obtained from the full Scottish Shelf 

Model (SSM). Spatially- and temporally-varying wind speed and direction 

data were taken from the ERA5 global reanalysis dataset 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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for the 2021 simulation period, with the data converted to surface stress 

using a standard algorithm. River flows were taken from the Grid2Grid 

climatological forcing data used by the SSM (Table 2.1). 

2.1.2 WeStCOMS 2020/2021 

WeStCOMS (West Coast of Scotland Coastal Ocean Modelling System) 

is an implementation of FVCOM (Finite Volume Community Ocean Model; 

Chen et al. 2003) coupled with a meteorological  WRF (Weather Research 

Forecasting) model. The model has been developed through multiple 

iterations in domain extent and operational capability (Aleynik et al. 2016), 

and has been used to simulate fate of sea lice in several projects (Adams et 

al. 2016, 2021; Aleynik et al. 2022). The domain used in the present version 

of the model covers the Scottish west coast from the northern Irish Sea in 

the south to Cape Wrath in the north, north and west to encompass the 

Western Isles (Davidson et al. 2021, Corrochano-Fraile et al. 2022). The grid 

is unstructured with non-overlapping triangular elements, allowing for 

higher resolution of complex areas such as the coastline of Loch Linnhe. 

Horizontally, the grid comprises 99999 nodes describing 177236 elements. 

Vertically, the model has 10 layers, in the terrain-following sigma-

coordinate system with concentration of levels in the upper most and lower 

most parts of water column. The model is forced by a tidal open boundary 

condition, with time series of sea surface elevations predicted at the open 

boundary nodes using the 11 dominant tidal constituents, freshwater inputs 

from the 228 largest rivers, computed from 3-hourly rainfall data, and 

surface heat, wind and precipitation forcing from the Scottish-WRF model. 

2.1.3 Wider Loch Linnhe System Model (WLLS) 

The Wider Loch Linnhe System (WLLS) model is also an 

implementation of FVCOM, and has a domain covering many of the Inner 

Hebrides from the southern tip of the Mull of Kintyre to the Isle of Skye in 

the north. The western boundary extends to approximately 7.5° W from 
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Northern Ireland to the southern Outer Hebrides. The model grid is 

unstructured with the highest horizontal resolution in Loch Linnhe, Loch 

Leven and Loch Sunart, where the node spacing goes down to 15 m.  The 

typical node spacing of these sea lochs is around 50 – 100 m, with Lower 

Loch Linnhe having a typical node spacing of 100 – 150 m. Beyond Loch 

Linnhe, its side lochs, and Loch Sunart, the unstructured grid resolution 

reduces further, with the node spacing at the western boundary being 

around 5 km. The water column is resolved using a hybrid sigma layer 

scheme with 10 standard terrain following sigma layers, each representing 

10% of the water column, in water depths shallower than 13 m. In areas 

deeper than 13 m, the water column is resolved with 2 fixed layers at the 

surface, each 1 m thick, 2 fixed layers at the bottom, each 2.5 m thick, and 

6 sigma layers of equal spacing for the mid depths. This enables the 

freshwater output from Upper Loch Linnhe to be well resolved. 

Two outputs from the model are used here, the one-year Climatology 

representing typical present-day conditions (1990-2014), and the 2021 

hindcast, see Table 2.1 for details.  
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Table 2.1: Summary of model setup differences between hydrodynamic versions 

HD Model Time Period Boundary Forcing  Atmospheric Forcing Fresh Water Forcing Output Variables* 

WLLSshuna 2021 hindcast The wider SSM 

version 2.01 

ECMWF ERA5 Grid2Grid climatology 

(1962-2011) 

 

U, V, W, η, S 

WeStCOMS  2021 hindcast North-East Atlantic 

ROMS operational 

model, provided by 

the Marine Institute, 

Ireland (Dabrowski et 

al., 2016). 

WeStCOMS-WRF 2 

km resolution, run 

at SAMS, (Aleynik 

2016; Davidson 

2021) 

Derived precipitation 

from WeStCOMS-WRF 

over 228 river 

catchment areas 

U, V, W, η, T, S 

WLLS 2021 2021 hindcast AMM15 (Graham et 

al., 2018) 

WRF 1/18° 

resolution supplied 

by CEH (Vieno et al. 

2016, Vieno et al. 

2014) 

Grid2Grid river 

discharge climatology 

(1962-2011), River 

temperature 

climatology applied 

based on data from 

the Scotland River 

Temperature 

Monitoring Network 

(Jackson et al. 2016). 

U, V, W, η, T, S 

WLLS 

Climatology 

1 year climatology 

(representing 1990 – 

2014) 

The wider SSM 

version 2.01 

Climatology derived 

from ECMWF ERA-

Interim (1990-2014) 

Grid2Grid climatology 

(1962-2011) 

U, V, W, η, T, S 

* U, V – East and North components of velocity 

W – Vertical velocity 

η – Sea surface height (elevation above MLOS) 

T – Water temperature 

S – Water salinity
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2.2 Physical field data     

Relatively few observations of current speed and direction suitable 

for calibrating the hydrodynamic models were available from Shuna Sound 

in 2021, since emphasis in the project (and limited financial resources) was 

placed on field sampling for larval sea lice. A deployment of a bed-mounted 

300 kHz Teledyne RD Instruments Sentinel V100 Acoustic Doppler Current 

Profiler (ADCP) was made at the Poll na Gille (PNG) fish farm site (Figure 

1.1) from 19th May – 11th August 2021, and these data have been used to 

evaluate the performance of the various hydrodynamic models. The 

deployment location was 56° 12.844’N 005° 34.924’W. The mooring was 

twice disturbed from unknown causes during the deployment period, 

meaning that only data from 10th June – 11th August were used for 

evaluation of the hydrodynamic model performance. The instrument was 

deployed in 32m of water, and configured with a vertical cell size of 1m. 

Data were recorded every 20 minutes following a 10-minute burst of 

sampling.  

2.3 Comparison of hydrodynamic models to physical field data   

Since sea lice larvae spend much of their time near the water surface, 

only the observed and predicted velocity data for the near-surface are 

shown here. The full comparison between model and data is presented in 

Appendix 1. The near-surface data was taken from the closest valid ADCP 

cell below the sea-surface, at a depth of -4.3 m. Modelled velocity results 

were interpolated in the vertical to provide results at the same depth as the 

observed data. 

The model – data comparison is illustrated in two ways. Firstly, a 

scatter plot showing the observed and predicted near-surface components 

of velocity are presented. The comparison could have been presented as 

time series plots, but the WLLS climatology, which is based on tides from 

1993, has a different velocity phase from the observations and the other 
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models, which distorts the comparison. Scatter plots do not reveal the 

phase. Secondly, the comparisons are presented as cumulative vector plots, 

which highlight the residual (non-tidal) currents at the measurement site. 

The residual flows are important for transport of sea lice over the period of 

their lifetime (~2 weeks).  

The results of the scatter plot comparison demonstrate that all 

models do a reasonable job of reproducing tidal currents at the PNG site 

(Figure 2.1). All four models have near-surface current speeds very similar 

in magnitude to the observed data. The peak current speeds from 

WeStCOMS are slightly enhanced relative to the observed peaks on both 

flood and ebb tides. Further, the orientations of all four sets of modelled 

currents are slightly offset relative to the observed data; this may be due to 

some inaccuracy in the model bathymetries, which inevitably are smoother 

than the real bathymetry, or due to the ADCP not being deployed in exactly 

the recorded location. Nevertheless, the performance of the models at 

reproducing the tidal currents is satisfactory. 
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East (m s-1) 
Figure 2.1. Scatter plots of observed and modelled East and North components of 

velocity in the near-surface layer from four hydrodynamic models: WLLSshuna 

(top left); WeStCOMS(top right); WLLS 2021 (bottom left); WLLS Climatology 

(bottom right). 

 

Cumulative vector plots integrate the measured velocity over time, 

converting the velocity into distance. These plots principally illustrate the 

residual flow. For the results shown here, the observed and modelled near-

surface currents over the time period of the observations were integrated 

to determine near-surface displacements over the deployment period.  

The predicted residual currents from the WLLSshuna and WeStCOMS 

models reproduce the magnitude of the observed cumulative displacements 

well, with WeStCOMS in particular simulating the residual flows very 

accurately (Figure 2.2). The direction of the modelled displacements is 

westward of the observed data. The two WLLS models over-predict the 

residual current strength by a factor of about 3, with the direction of the 

climatological simulation also being somewhat wayward. This is perhaps 
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not surprising given the steady south-westerly winds that are used to force 

the climatological simulation. The two WLLS simulations appear to have the 

potential (based on this single-point comparison) to transport sea lice 

larvae out of Shuna Sound more quickly than is realistic. The WLLSshuna 

and WeStCOMS models should produce more realistic flushing of larvae 

from the system. 
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East (km) 
Figure 2.2. Cumulative vector plots of observed and modelled velocity in the near-

surface layer from four hydrodynamic models: WLLSshuna (top); WeStCOMS (upper 

middle); WLLS 2021 (lower middle); WLLS Climatology (bottom). The observations 

are from the topmost valid ADCP cell; the modelled velocities have been 

interpolated in the vertical to the same depth. 
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3. Biophysical Modelling in Shuna Sound 

3.1 Description of Particle Tracking Applications  

3.1.1 BioTracker  

SAMS’ BioTracker code (Adams et al. 2012, 2014, 2016) was written 

to be driven using the outputs of the ‘WeStCOMS’ hydrodynamic model 

(Aleynik et al. 2016; Davidson et al., 2021). Both this model and the Scottish 

Shelf Model (SSM) (Wolf et al. 2016) are based on the Finite Volume Coastal 

Ocean Model (FVCOM) system (Chen et al. 2003), and as such the outputs 

are in a fairly similar form. However, some variables differ between the 

two models, see “Preliminary report on Loch Linnhe dispersal model 

simulations setup using Biotracker and SSM” for details of methodology 

used to couple this particle tracking model with the SSM.   

Particles are moved horizontally subject to the water currents 

predicted by the hydrodynamic model, in addition to random turbulent 

diffusion. Larval particles inhabit the upper layer of the water column, and 

were not allowed to move vertically between layers (Cantrell et al. 2019). 

Stage durations are dependent on water temperature (which typically vary 

between 8 – 14 °C in this locality), with particles moving from the non-

infective nauplii stage to the infective copepodid stage after accumulating 

40 degree-days (1 day at 10 degrees C equates to 10 degree-days). 

Particles are removed from the simulation after 150-degree days (Johnsen 

et al. 2016, Samsing et al. 2019). Particles are viewed as “super-particles”. 

This means lice particles are able to infect multiple sites; i.e., they do not 

end their movement when an infection/arrival event occurs. Particles also 

have a density (reduced over time by mortality) which governs the 

predicted overall spatial. Weighting of (number of lice represented by) each 
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larval particle was assumed to decay over time at a rate of 0.01 hr-1 

(Amundrud & Murray 2009, Adams et al. 2016).  The particle tracking code 

is available in an online repository (Adams 2019b). 

3.1.2 FISCM 

The tracking simulations undertaken by Marine Scotland Science were 

performed using FISCM (FVCOM i-state configuration model), an offline 

Lagrangian / individual based model for FVCOM (Ji et al. 2011; Liu et al. 

2015). Particles positions are updated by FISCM using a 4th-order Runge-

Kutta scheme to solve the Lagrangian equation of motion, here the time 

step was updated every 10 minutes. Boundary conditions ensure that 

particles stay within the model domain: when reaching the land at a new 

time step the particle position is reset to the previous time step and 

reflecting conditions are used for the seabed and the free surface. Finally, 

MSS adapted FISCM to allow particles to reproduce a diel vertical migration 

using the following coefficient set by the user. FISCM does not currently 

have a function for changing behaviour from non-infective to the infective 

stage, so this is done in a post processing stage, based on age in hours or 

degree days based on equations in Stien et al. (2005). 

3.1.3 UnPTRACK  

UnPTRACK (Unstructured mesh Particle TRACKing model) is a multi-

purpose Lagrangian particle-tracking model designed to simulate the 

transport pathways of pelagic biota, chemical contaminants or particulate 

wastes using flow fields generated by unstructured mesh hydrodynamic 

(HD) models. UnPTRACK was developed from an earlier particle-tracking 

model that used hydrodynamic flow fields from regular grid models; the 

earlier version has been used to simulate the transport and dispersion of 

solute veterinary medicines (Willis et al., 2005) and dispersal of pelagic 
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organisms, including sea lice larvae (Gillibrand and Willis, 2007) and 

harmful algal blooms (Gillibrand et al., 2016a).  

The model runs offline; velocity data to drive the model can be 

obtained from current meter observations or from hydrodynamic model 

simulations. Advection can be treated using either a fourth-order Runge-

Kutta algorithm or a simple Euler approach. A random walk model is used to 

simulate horizontal and vertical eddy diffusion (Hunter et al., 1993; Visser, 

1997). Various aspects of biological development (e.g., temperature-

dependent stage development, mortality) and behaviour (e.g., vertical 

migration, low salinity avoidance) can be simulated. For chemical 

contaminants, a decay half-life can be simulated. The basic advection, 

diffusion and biological algorithms in the model have been described by 

Gillibrand and Willis (2007) and Gillibrand et al. (2016a). 

For the simulations in this work package, UnPTRACK was run with the 

flow fields produced by all four hydrodynamic models. Particle behaviour 

included upward swimming during daylight hours (6am – 6pm) and 

avoidance of low salinity water by downward swimming when the salinity 

at the particle location was less than 20 psu. Upward swimming speeds 

were 1.25 cm s-1 for nauplii and 2.14 cm s-1 for copepodids (Brooker et al., 

2018). In practice, these swimming speeds are used only in the initial 

period of first light, when the larvae return to the surface. Once at the 

surface, much lower swimming speeds would be sufficient to overcome 

vertical diffusion and keep the larvae at the surface i.e. the larvae do not 

swim at the prescribed speeds continuously for 12 hours. With a vertical 

diffusion coefficient of 0.001 m s-1 used by the models (Table 3.1), a 

swimming speed of 0.3 cm s-1 would be sufficient to keep the larva at the 

sea surface throughout most of the open sea, except at isolated locations 

where downwelling may occur. During hours of darkness (6pm – 6am), lice 
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particles were either passive, subject only to physical processes of 

advection and diffusion, or had a small sinking velocity of 0.1 cm s-1. 

3.2 Model Configuration 

3.2.1 Common configuration parameters across all models 

Some basic parameter settings were used by all the biological lice 

dispersal models and are listed in Table 3.1 with values shown. 

Table 3.1: Summary of common setup parameters between the dispersal (particle 

tracking) models 

Parameter Value 

Horizontal diffusion coefficient (m2 s-1) 0.1 

Mortality constant (h-1) 0.01 

 

3.2.2 Differences in model configuration parameters 

In a number of respects, the three dispersal models used were 

different (Table 3.2). Particles in the simulations using Biotracker were kept 

at a fixed depth at the surface (0 m), whereas the particles in the UnPTRACK 

and FISCM simulations allowed particles to move vertically in response to 

physical and biological triggers. These included vertical velocity, vertical 

diffusion, swimming behaviour and low salinity water avoidance 

(UnPTRACK only). Vertical velocities were taken directly from the 

hydrodynamic model output. Vertical diffusion was treated as a random 

walk algorithm, analogous to horizontal diffusion, with the vertical 

diffusivity of 0.001 m2 s-1 in UnPTRACK, while in FISCM vertical diffusion 

varied with depth (Table 3.2). Swimming behaviour in UnPTRACK involved 

upward swimming during daylight hours (6am – 6pm) at swimming speeds 

appropriate for nauplii and copepodids (Table 3.2; Brooker et al. 2018). 
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While swimming, nauplii and copepodid particles also respond to low 

salinity water by swimming downwards (at the same speed as the upward 

swimming rate) until the salinity is greater than the threshold value (in 

these simulations, 20 PSU). At night, particles in UnPTRACK were passive, 

responding only to physical forcing (vertical advection and diffusion).  

Swimming behaviour in FISCM was a single upward swimming value, as it 

does not yet distinguish between nauplii and copepodids and distinguishing 

between the stages is carried out in a post processing step (Table 3.2). 

Development rates were typically temperature dependent, with the 

nauplii stage moulting to the copepodid stage after 40 degree-days 

(Johnsen et al., 2016; Sandvik et al., 2020) and the total larval lifespan 

lasting either 150 (Johnsen et al. 2016, Samsing et al. 2019) or 170 

(Sandvik et al., 2020) degree-days. However, water temperature was not 

simulated by the WLLSshuna model and a fixed development rate was used 

in these simulations (Table 3.2). 

Not listed in Table 3.2 are the model time steps. Biotracker used a 

time step of 120s, FISCM 30 s, and UnPTRACK used 600 s with sub-time-

stepping (down to 9.375 s) enabled when required to ensure particles were 

not lost. 
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Table 3.2: Summary of setup differences between biological (particle tracking) models 

PT Model HD Model Vertical Diffusion (m2 
s-1) 

Stage-development 
(nauplii, copepodid) 

Vertical Velocity & upward 
swimming 

Low 
Salinity 
Avoidance 

Particle Source Rate 
(Np/src/hr) 

Biotracker WeStCOMS N/A Temperature-dependent 
(40 degree-days, 150 
degree-days) 

No (Fixed depth = 1m) No 10 

FISCM WLLS 2021 Variable Fixed (86 hours, 15 days) Yes:  
Downward: 0 cm s-1;  
Upward: 1.8 cm s-1; 

6am - 6pm 

No 10 

FISCM WLLS Climatology Variable Fixed (86 hours, 15 days) Yes:  

Downward: 0 cm s-1;  
Upward: 1.8 cm s-1; 

6am - 6pm 

No 10 

UnPTRACK WLLSshuna 0.001 Fixed (96 hours, 15 days) Yes  
Nauplii: 1.25 cm s-1; 
Copepodids: 2.14 cm s-1 
6am – 6pm 

Yes (20 
PSU) 

50 

UnPTRACK WeStCOMS 0.001 Temperature-dependent 
(40 degree-days, 170 
degree-days) 

Yes  
Nauplii: 1.25 cm s-1; 
Copepodids: 2.14 cm s-1 
6am – 6pm 

Yes (20 
PSU) 

50 

UnPTRACK WLLS 2021 0.001 Temperature-dependent 
(40 degree-days, 170 
degree-days) 

Yes  
Nauplii: 1.25 cm s-1; 
Copepodids: 2.14 cm s-1 
6am – 6pm 

Yes (20 
PSU) 

50 

UnPTRACK WLLS Climatology 0.001 Temperature-dependent 
(40 degree-days, 170 
degree-days) 

Yes  
Nauplii: 1.25 cm s-1; 
Copepodids: 2.14 cm s-1 
6am – 6pm 

Yes (20 
PSU) 

50 
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3.3 Model Simulations 

The model simulations covered the entire field sampling season of 

2021, running from 1st April – 31st October 2021. Particle locations were 

output hourly. Analysis focussed on the period after 15th April, when a full 

generation of larval lice had been released and dispersed, providing an 

initial distribution of copepodids.  

3.4 Calculation of lice densities 

Modelled distributions of particles were converted to densities of 

larval sea lice in two ways. Firstly, numbers of particles (each representing 

a known number of sea lice larvae, decreasing with time) within a radial 

distance of each sampling location were counted and converted to lice 

density. The area of water within which particles were counted was simply 

calculated as the area of the circle of radius r (A = πr2). Six values of r (75 m, 

100 m, 150 m, 200 m, 250 m, 500 m) were used to explore the variability 

in this calculation method. Where the model allowed particles to move 

vertically, a 2 m depth window (sample depth +/- 1 m) was used to 

calculate densities at the sample depths (1 m, 6 m, 12 m). Modelled 

densities at the time of the sampled data were extracted for the 

comparison. 

Secondly, predicted infective lice densities were calculated and 

presented as spatial maps across Shuna Sound region. Although the 

hydrodynamic and particle tracking models operated on unstructured 

meshes with variable cell sizes (Figure 3.1), the particle counts were 

performed on a rectangular grid with square cells. The advantage of using a 

regular grid to calculate densities is that the resolution and accuracy of the 

calculated densities is known and is the same across the domain; this is not 

the case when a variable mesh size is used. The boundaries used for the 
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counting grid were 161000 E – 187000 E and 690000 N to 729000 N 

(OSGB1936 coordinate reference system). The square counting cells were 

100m x 100m in size when plotting instantaneous distributions 

(“snapshots”) and 250 m x 250 m for the model inter-comparisons.  

3.4.1 Number of Particles   

The number of particles used in any particle tracking simulation 

needs careful consideration, and is dependent on the planned outputs. 

Particle simulations with planned output concentrations averaged over 

many time steps may need fewer particles than simulations where 

instantaneous distributions are required. There are no hard-and-fast rules, 

although Brickman et al. (2009) did note that “there is no excuse for using 

too few particles” and recommended that tests be done to check whether or 

not sufficient particles are being used. Calculating particle concentrations 

on a regular grid of square (or rectangular) cells mean concentration 

accuracy and resolution are constant across the grid domain, whereas those 

metrics are variable if an unstructured mesh is used to calculate 

concentrations. 

One approach to setting particle numbers is to specify that a particle 

tracking model should be able to simulate a uniform horizontal distribution 

of the modelled variable, analogous to the requirement to be able to 

simulate a well-mixed vertical distribution (North et al., 2006). In the 

horizontal, that means that there should be enough particles in the 

simulation such that each grid cell in the counting grid can be populated by 

at least one active particle. A rule-of-thumb, therefore, might be that the 

number of active particles at every time step needs to be at least the 

number of wet grid cells in the counting grid. If temporal-mean values were 

being output, then the numbers of particles could arguably be reduced, 

depending on the averaging period. Ultimately, care needs to be taken so 
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that distributions of the modelled variable are fully represented and 

concentrations calculated at a numerical resolution that is adequate for the 

purposes of the modelling exercise. The resolution is determined by the 

density calculated when a grid cell on the counting grid is occupied by a 

single particle, which is, therefore, the lowest concentration that can be 

calculated. Since the number of lice represented by each particle reduces 

over time due to mortality, the resolution of the model increases with time 

(i.e. lower densities can be calculated). 

 

 

Figure 3.1. The unstructured mesh from the WestCOMS hydrodynamic model (left) 

and (right) the regular square mesh used for computation of lice density and 

prevalence. 

 

Two approaches to particle releases are commonly used: 1) a fixed 

particle release rate per source per hour, whereby each particle represents 

a different number of lice depending on the source of lice at the time of 
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particle release; 2) using particles that represent a fixed number of lice (Np),  

whereby the number of particles released from each source each hour  

varies as the source of lice varies. An advantage with the latter approach is 

that the resolution of the calculated densities is known and is fixed. A 

disadvantage is that, in order to represent small sources of lice, a relatively 

low value of Np may be required, which means that large numbers of 

numerical particles may be required to represent large sources of lice, 

increasing the computational demand. However, the second approach 

means that the largest sources of lice are represented by the most particles, 

where the first approach may overplay the importance of smaller sources. 

Both the approaches described above provide only a nominal, 

theoretical estimate of the resolution of the calculated lice densities. In 

practice, the number of particles used may be limited by the available 

computational power, but the sufficiency of the number of particles used in 

the simulation can, and should, be tested by checking that that the results 

of interest, whether time series of density or distributions of sea lice, do 

not change if the number of particles is further increased (Brickman et al., 

2009; van Sebille et al., 2018). 

In the present study,  simulations used a fixed release rate of 10, 50 

or 100 particles per source per hour. Tests assessing the effect of particle 

numbers on calculated lice densities were made for particle sources rates 

varying from 2 particles per source per hour to 100 particles per source per 

hour. Time series of lice densities at the six sampling locations (see §3.5) 

were cross-correlated against the time series using Np = 100 particles per 

source per hour (which was assumed to be most accurate). The resulting 

correlation coefficients, r, are shown in Table 3.3. The results demonstrate 

the stronger correlation with the Np = 100 simulation when larger numbers 

of particles are used, but also suggest that performance is dependent on 

location. The open water site in the Southern Approaches had lower values 
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of r than the sites within Shuna Sound , which were more enclosed. 

However, values of r also deteriorated with declining particle numbers for 

Loch Melfort. Ultimately, as many particles as the available computational 

power reasonably allows should be used for particle tracking simulations, 

and the implications for calculated outputs should be borne in mind. 

 

Table 3.3. Correlation coefficients, r, between time series of modelled particle 

density at the six sampling locations (see §3.5) using different particle source 

rates. The time series for each source rate was correlated against the time series 

with N = 100 particles per source per hour. 

 Particle Source Rate (N per source per hour) 

Site 100 50 20 10 5 2 

Asknish Bay 1.000 0.994 0.986 0.978 0.951 0.890 

Arsa Island 1.000 0.996 0.988 0.977 0.967 0.876 

Loch Melfort 1.000 0.965 0.910 0.844 0.721 0.609 

Musgan 1.000 0.996 0.992 0.985 0.969 0.904 

NE Shuna 1.000 0.981 0.961 0.924 0.910 0.704 

Southern 

Approaches 
1.000 0.868 0.804 0.739 0.578 0.429 

 

 

3.5 Aquaculture study area    

Particles were released from the sites of eight active farms in Shuna 

Sound during summer 2021 (Figure 3.2), including the Mowi sites of Port na 

Cro (PNC), Poll na Gille (PNG) and Bagh Dail Nan Cean (BDNC) and the Kames 

sites of Kames Bay (East), Kames Bay (West), Shuna Castle, Shuna SW and 

North Moine. The locations and consented biomass of the sites are given in 

Table 1.1. 



30 
 

 

Figure 3.2. Map of Shuna Sound showing locations of particle release points 

(aquaculture sites, ●) and plankton tow sampling locations (■). 

 

3.5.1 Estimating Lice Loads on Farms for Model Validation   

Weekly counts of adult female lice and numbers of fish on each site 

were provided by farm operators on a weekly basis. From these values, and 

assuming that each adult female louse releases 30 larval lice per day (Stien 

et al. 2005, Murray et al., 2022), the numbers of lice larvae released each 

day from each site were estimated (Figure 3.3).  
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Figure 3.3 Estimated number of larvae released each day from each farm 

during the field sampling season from 1st April to 30th October 2021. 

 

3.6 Biological field data 

The sampling methodology is detailed in Reinardy et al. (2023) 

Section 2.4 “Field sampling main campaign”. Details of the sea lice captured 
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and identified are presented in section 3.3 “Sea lice larvae in the wild” in 

Table 2. Figure 3.4 summarises the measured infective sea lice densities 

from the field sampling. Essentially monthly surveys were undertaken, with 

a total of 348 valid samples collected for comparison with the model 

output. Many of these values were zero (Figure 3.4); see Reinardy et al. 

(2023) for a discussion of the challenges of sampling planktonic sea lice 

larvae. 

 
Figure 3.4 Measured nauplii (top) and copepodid (bottom) densities sampled at the 

six sites during the field sampling campaign in 2021. 
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3.7 Comparison of field data with particle tracking outputs  

Key results from each model are presented in the following sections. 

Some selected further results are then presented to illustrate general 

conclusions that can be drawn from the modelling exercise. 

3.7.1 UnPTRACK    

Time series of modelled copepodid density from the coupled 

UnPTRACK-WLLSshuna model are shown in Figure 3.5. Lice densities were 

calculated at the same depth as the observed values using a 2 m depth 

window (i.e. observed depth ± 1 m).  Modelled results were extracted from 

the time series at the time and depth of the observed data and plotted 

against the observed data in Figure 3.6. 

 

Figure 3.5. Comparison between UnPTRACK modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a 100 m radial distance centred 

on the sampling location (▬), overlain by the observed values (▲) at the different 

depths. The UnPTRACK results here used the WLLSshuna hydrodynamic model. 

Note that the modelled densities were calculated over a depth window  of 2 m. 
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Figure 3.6 Comparison between UnPTRACK modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a different radial distance 

centred on the sampling location. The UnPTRACK results here used the WLLSshuna 

hydrodynamic model. Note that modelled lice densities are given per cubic metre 

(variable depth particles). 

 

3.7.2 Biotracker  

Time series of modelled copepodid density from the coupled 

Biotracker-WeStCOMS model are shown in Figure 3.7. Lice densities were 

calculated at the same depth as the observed values using a 2 m depth 

window (i.e. observed depth ± 1 m).  Modelled results were extracted from 

the time series at the time and depth of the observed data and plotted 

against the observed data in Figure 3.8. 
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Figure 3.7 Comparison between Biotracker modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a 100m radial distance centred on 

the sampling location (▬), overlain by the observed values (▲) at the different depths. 

The Biotracker results here used the WeStCOMS hydrodynamic model. Note that the 

modelled units of lice m-2 were converted to lice m-3 by assuming densities were 

calculated over a depth range of 1 m (fixed depth particles) 

 
Figure 3.8 Comparison between Biotracker modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a different radial distance centred on 

the sampling location. The Biotracker results here used the WeStCOMS hydrodynamic 

model. Note that modelled lice densities are given per square metre (fixed depth 

particles). 
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3.7.3 FISCM  

Time series of modelled copepodid density from the coupled FISCM-

WLLS2021 model are shown in Figure 3.9. Lice densities were calculated at 

the same depth as the observed values using a 2 m depth window (i.e. 

observed depth ± 1 m).  Modelled results were extracted from the time 

series at the time and depth of the observed data and plotted against the 

observed data in Figure 3.10. 

 

Figure 3.9 Comparison between FISCM modelled and observed copepodid densities 

sampled at the six sites during the field sampling campaign in 2021. Each plot 

represents modelled values calculated using a 100m radial distance centred on the 

sampling location (▬), overlain by the observed values (▲) at the different depths. 

The FISCM results here used the WLLS-2021 hydrodynamic model. Note that the 

modelled units of lice density are lice m-2 (integrated over depth). 
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Figure 3.10 Comparison between FISCM modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a different radial distance 

centred on the sampling location. The FISCM results here used the WLLS2021 

hydrodynamic model. Note that modelled lice densities are given per square metre 

(particle counts integrated over depth). 

3.7.3 Combined Model  

The modelled lice densities from the three coupled systems presented 

in §3.7.1 - §3.7.3 were averaged (arithmetic mean) to provide a “Combined 

Model” dataset.  For this purpose, all modelled densities were calculated by 

integrated particle numbers over the whole water depth, so that the units 

are lice m-2. Time series of modelled copepodid density from the Combined 

model are shown in Figure 3.11. Lice densities were calculated at the same 

depth as the observed values using a 2 m depth window (i.e. observed 

depth ± 1 m).  Modelled results were extracted from the time series at the 
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time and depth of the observed data and plotted against the observed data 

in Figure 3.12. 

 
Figure 3.11 Comparison between the combined modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a 100m radial distance centred 

on the sampling location (▬), overlain by the observed values (▲) at the different 

depths. Note that the modelled units of lice density are lice m
-2
 (integrated over 

depth). 

3.8 Modelled Mean Distributions of Infective Lice 

The modelled mean distributions of infective lice, averaged over the 

entire model simulations from 16th April – 30th October 2021, are shown in 

Figures 3.13 and 3.14. While these are long periods over which to average, 

and do not therefore represent likely densities that wild fish may 

encounter, they do illustrate the differences in predicted distributions that 

different models may produce, even after such long averaging. The 

simulations from the Biotracker-WeStCOMS and FISCM-WLLS2021 model 

systems are shown in Figure 3.13. The UnPTRACK PTM was run with three 

hydrodynamic models for 2021 (Figure 3.14); since the WLLSshuna model 

does not include a temperature variable and cannot, therefore, simulate a 

temperature-dependent development, the larval development in all three 
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runs was set to a fixed development rate (see WLLSshuna in Table 3.2) to 

ensure biological consistency between the model runs.  

 

Figure 3.12 Comparison between the combined modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a different radial distance 

centred on the sampling location. Note that modelled lice densities are given per 

square metre (particle counts integrated over depth). 

 

The modelled distributions showed some significant differences, 

although there were also some commonalities. Modelled infective lice 

densities were elevated in the waters to the east of Shuna Island in all 

simulations, with most models showing further accumulation of lice in 

Asknish Bay and the shoreline around Croabh Haven. Several of the model 

combinations also predicted elevated lice densities to the west of Shuna 

Sound at the north end of the Sound of Luing; however, this was not 
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common to all model results. Some notable differences included densities in 

Loch Melfort, which were predominantly zero in the runs using the 

WestCOMS model and higher in the other models; the WestCOMS model 

used freshwater inputs from an operational meteorological model, whereas 

the other models used a river flow climatology, which could explain 

differences towards the heads of the lochs (e.g. Loch Craignish) in the model 

domains. 

Interestingly, given that the biological model was identical in each 

case, the UnPTRACK simulations also produced some significant differences 

in the predicted distributions due solely to the different hydrodynamic 

models (Figure 3.14). This is perhaps not surprising: although absolute 

differences between the modelled flow fields from the various 

hydrodynamic models may be relatively small, the integration of small 

differences over the lifetime of a sea louse (ca. 15 days) may result in 

substantially different transport pathways for an individual, and perhaps 

radically different predicted infective sea lice distributions.  

 

  
Figure 3.13 Simulation-mean infective lice density distributions for the Biotracker-

WeStCOMS (left) and FISCM-WLLS2021 (right) simulations, from 16th April – 30th 

October 2021. 
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Combining the model results into an ensemble-mean (5 members) 

smooths out some of the idiosyncrasies between models and illustrates 

regions of the domain where the results are more consistent, at both high 

and low densities (Figure 3.15). Elsewhere, where predictions are more 

varied, the standard deviation (presented here as the coefficient of 

variation, CV, defined as the standard deviation divided by the mean) 

across the ensemble provides a measure of the consistency of the results. 

Low values of CV represent areas where consistency between models is low 

(standard deviation is small compared to the mean), whereas high values of 

CV indicate areas where there is considerable variability between the 

model predictions. For the present 5-member ensemble of Shuna Sound in 

2021, the CV is low (less than 0.5) in the central Shuna Sound , in the waters 

south of Luing, and in the central outer Firth of Lorne. Values of the CV are 

high (greater than 1.0) at the heads of Loch Melfort, Loch Craignish and in 

Loch Crinan, reflecting the different predictions for these areas from the 

different models (Figures 3.13 and 3.14). Note that values of the CV can be 

high due to low values of the ensemble-mean; this is likely the cause of the 

high CV values in the waters adjacent to Mull in the north-west of the plot 

(Figure 3.15). 
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Figure 3.14 Simulation-mean infective lice density distributions from the 

UnPTRACK model using the WLLSshuna (top left), WeStCOMS (top right) and 

WLLS2021 (bottom) hydrodynamic models from 16th April – 30th October 2021. For 

these simulations, UnPTRACK used a fixed larval development rate with both the 

WeStCOMS and WLLS2021 models to match the WLLSshuna simulation (Table 3.2). 
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Figure 3.15 Ensemble-mean (left) and coefficient of variation (CV) (right) of 

infective lice density distributions from the combined (averaged) model dataset 

from all five simulations shown in Figures Figure 3.13 and 3.14  for 16th April – 

30
th
 October 2021. 

 

3.9 Evaluation and Discussion of Bio-Physical Modelling  

The comparisons between predicted lice densities from all model 

combinations, including the additional simulations highlighted in Table 3.2 

but not shown in §3.7, and the observed planktonic lice densities were all 

quantitatively poor. The data were heavily zero-inflated, evident from 

Figures 3.5 – 3.10 and discussed by Reinardy et al. (2023). In contrast, the 

modelled lice densities, while zero more than 50% of the time, were also 

quite frequently non-zero. The temporal variability in modelled lice 

densities from individual models is evident (Figures 3.5, 3.7 and 3.9) and is 

also apparent when the model predictions are combined into an arithmetic 

mean density (Figure 3.11). 

No significant linear regression was achieved between the modelled 

lice densities and the observed planktonic lice data (Figures 3.6, 3.8, 3.10). 

The calculated Pearson correlation coefficients, r, were typically close to 
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zero and, again, were not improved by combining the model output (Figure 

3.12). Although the results shown above are for the infective copepodid 

stage only, the results were not better for the nauplius stage. 

The poor agreement between model results and planktonic lice data is 

thought to be due to the larval lice distributions being highly spatially and 

temporally variable. The temporal variability in copepodid distributions is 

illustrated in Figure 3.16 for 13th October 2021, as planktonic larvae are 

moved around by tidal and wind-driven currents. On that date, a infective 

lice concentration of 2.25 lice m
-3
 was measured at Asknish Bay (Figure 3.4), 

so lice were present within the bay at that time. The variability is more 

apparent in animations of the model results, which can be viewed online at: 

http://marine.gov.scot/information/salmon-parasite-interactions-linnhe-

lorn-and-shuna-spills  

High spatial and temporal variability in sea lice larvae distributions is 

not unexpected, given that the larvae are thought to proactively stay at the 

sea surface (at least during daylight hours) and are therefore subject to 

complex ocean dynamics arising from the combination of tidal, wind-driven 

and freshwater-driven dynamics. The presence of fronts in the coastal zone, 

some of which will be highly transient and some of which may be quasi-

permanent, may lead to accumulations of lice larvae during daylight hours 

(when larvae are staying at the surface) which again may be temporary or 

more long-lasting. The response of lice distributions to wind forcing is 

illustrated in Figure 3.17. In May, lice levels inside Shuna Sound were very 

low, with much of the area having a modelled mean density of less than 

0.01 lice m-2. Densities of infective lice exceeded 0.1 lice m-2 for less than 

10% of the month in the waters east of Shuna Island (as evidenced by the 

prevalence plot in Figure 3.17).  During May, the wind forcing was 

predominantly northerly (Figure 3.18), and clearly drove a strong export of 

lice from Shuna Sound before they reached the infective stage. In contrast, 

http://marine.gov.scot/information/salmon-parasite-interactions-linnhe-lorn-and-shuna-spills
http://marine.gov.scot/information/salmon-parasite-interactions-linnhe-lorn-and-shuna-spills
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in June, winds were predominantly southerly (Figure 3.18) and mean 

densities in Shuna Sound were substantially higher, exceeding 1 lice m-2 in 

some areas, with densities exceeding 0.1 lice m-2 occurring up to 50% of the 

month (Figure 3.17). During this period, larval lice were retained by the 

wind forcing within Shuna Sound , and densities were higher as a results. 

The variability in modelled infective densities arises, then, as a result 

of interactions between tidal and wind-driven currents and baroclinic 

features such as fronts, and leads to high temporal and spatial variability. 

Similar findings and conclusions regarding the high spatiotemporal 

variability of sea lice distributions were reported by Skarðhamar et al. 

(2019). At the sampling locations in Shuna Sound , infective lice numbers 

were typically very low, but could increase dramatically for short periods. 

The box-and-whisker plot (Figure 3.19) illustrates the modelled variability, 

with mean lice densities being less than 0.5 lice m-3 at five of the sites,  the 

exception being Musgan (Table 3.4). These mean values were distorted by 

the high maximum values; the median modelled infective lice densities 

were typically zero. For a large proportion of time, generally at least 50%, 

modelled infective lice densities in the surface 2 m were zero (Table 3.4). 

It should be noted that the zero densities may be partly a function of 

the number of numerical particles used in the simulation. For the UnPTRACK 

simulations, the particle source rate was 50 particles per source per hour.  
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Figure 3.16. Modelled infective lice distributions at two-hourly intervals during the 

afternoon of 13th October 2021. The plots illustrate the continually changing 

distribution of lice in Shuna Sound due to advection by the combination of tidal, 

wind-driven and freshwater-driven currents. The densities were calculated on a 

100m x 100m grid. 
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Figure 3.17 Modelled monthly-mean infective lice density distributions (left) and 

prevalence of densities exceeding 0.1 lice m-2 (right) for May 2021 (top) and June 

2021 (bottom). The model system was UnPTRACK – WLLSshuna.  
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Figure 3.18 Wind vectors at the NE Shuna sampling location from the ECMWF 

ERA5 reanalysis for April – October 2021. 

 

 

 

Figure 3.19 Box and whisker plot for modelled infective lice densities (lice m-3) at 

each site for April – October 2021. The model system was UnPTRACK – 

WLLSshuna, and the densities were calculated over the surface 2 m of the water 

column (depth = 0 – 2 m). The plots shows the mean (μ) and median modelled 

density at each site, with the 25th percentile and 5th percentile ranges also shown. 

 

N 
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Table 3.4 Summary statistics of the modelled infective lice densities (lice m
-3
)  at 

the six sampling stations in Shuna Sound  during April – October 2021 using a 100 

m radial distance and averaging over the surface 2 m water depth. The model 

system was UnPTRACK – WLLSshuna. The “No. zeros” row indicates the percentage 

of time that the modelled infective lice density at each site was zero. 

 
Asknish 

Bay 

Eilean 

Arsa 

Loch 

Melfort 
Musgan 

NE 

Shuna 

Southern 

Approache

s 

Mean 0.458 0.367 0.080 1.071 0.070 0.028 

Median 0.000 0.003 0.000 0.000 0.000 0.000 

St. Dev. 2.647 1.420 0.376 4.439 0.310 0.109 

95th 

percentile 
0.710 0.891 0.208 2.558 0.135 0.077 

Maximum 67.202 28.889 7.395 108.167 8.329 2.020 

No. zeros (%) 58.892 48.678 77.035 52.041 59.949 75.344 
 

The same variability in modelled infective lice densities was evident 

in the results from the other model systems. For Biotracker-WeStCOMS and 

FISCM-WLLS2021, calculated densities were depth-integrated (units lice m-2) 

giving generally higher values than UnPTRACK-WLLSshuna, since all lice 

particles are counted and densities are not divided by the water depth.  

Nevertheless, the variability is similar, with Biotracker-WeStCOMS 

showing low median and mean values and high maximum values (Figure 

3.20); for this model system, modelled infective lice densities at each 

sample location were zero for at least 60% of the time (Table 3.5). The 

maximum values were typically in the range 150 – 350 lice m-2, except at 

Loch Melfort where modelled lice densities were lower in this model 

combination (Figure 3.20, Table 3.5). The magnitudes of the mean, median 

and maximum values for the FISCM-WLLS2021 model were similar to those 

for Biotracker-WeStCOMS (Figure 3.21), but the distribution was different, 

with higher values at Asknish Bay and Eilean Arsa and relatively low values 

elsewhere (Table 3.6).  

All three modelling systems discussed here predicted predominantly 

low values of infective lice at the sample locations, interspersed with brief 

periods of high values. This is typical of buoyant material in the water 
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column, which may accumulate at fronts and convergences and be advected 

around. Models that simulate vertical movement of lice larvae through 

sinking/swimming, vertical advection and diffusion predict greater 

dispersion as movement away from convergence zones may occur during 

hours of darkness when lice larvae are not necessarily at the water surface.  

The high percentage of time that the models predicted there were 

zero copepodids at the sample locations may also partly explain why low 

planktonic lice numbers were sampled in WP3 (and in other studies around 

the world). Plankton sampling methods usually only sample water for a few 

minutes (up to 15 minutes in WP3) and sample limited volumes of water. 

Given the spatial and temporal variability in lice numbers predicted by the 

models, planktonic sampling at fixed locations needs a lot of luck to capture 

high numbers of lice. This was perhaps demonstrated by Nelson et al. 

(2017), who sampled planktonic lice larvae in and around salmon farms in 

the Bay of Fundy, Canada and collected one sample at a reference station 

containing 255 copepodids; the other 81 reference samples collected 35 

copepodids in total, with a mean larval lice density of 0.08 lice m-3. 

 

Figure 3.20 Box and whisker plot for modelled infective lice densities (lice m-2) at 

each site for April – October 2021. The model system was Biotracker – WeStCOMS, 

and the densities were depth-integrated. The plots shows the mean (μ) and median 

modelled density at each site, with the 25th percentile and 5th percentile ranges 

also shown. 
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Table 3.5 Summary statistics of the modelled infective lice densities (lice m
-2
)  at 

the six sampling stations in Shuna Sound  during April – October 2021 using a 100 

m radial distance, and integrating over the full water depth. The model system was 

Biotracker – WeStCOMS. The “No. zeros” row indicates the percentage of time that 

the modelled infective lice density at each site was zero. 

 
Asknish 

Bay 

Eilean 

Arsa 

Loch 

Melfort 
Musgan 

NE 

Shuna 

Southern 

Approache

s 

Mean 2.102 1.541 0.199 2.163 1.615 0.717 

Median 0.000 0.000 0.000 0.000 0.000 0.000 

St. Dev. 10.291 9.139 1.598 9.066 5.828 6.121 

95th 

percentile 
10.221 5.636 0.044 12.149 7.937 3.108 

Maximum 346.754 198.932 46.681 231.985 166.298 349.382 

No. zeros (%) 68.245 84.007 94.950 69.276 60.143 78.472 

 

 

 

 

Figure 3.21 Box and whisker plot for modelled infective lice densities (lice m-2) at 

each site for April – October 2021. The model system was FISCM – WLLS2021, and 

the densities were depth-integrated. The plots shows the mean (μ) and median 

modelled density at each site, with the 25th percentile and 5th percentile ranges 

also shown. 
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Table 3.6 Summary statistics of the modelled infective lice densities (lice m
-2
)  at 

the six sampling stations in Shuna Sound  during April – October 2021 using a 100 

m radial distance, and integrating over the full water depth. The model system was 

FISCM – WLLS2021. The “No. zeros” row indicates the percentage of time that the 

modelled infective lice density at each site was zero. 

 
Asknish 

Bay 

Eilean 

Arsa 

Loch 

Melfort 
Musgan 

NE 

Shuna 

Southern 

Approache

s 

Mean 4.063 4.306 0.754 0.000 0.637 0.112 

Median 0.000 0.000 0.000 0.000 0.000 0.000 

St. Dev. 20.107 28.238 3.783 0.000 3.334 0.868 

95th 

percentile 
14.814 12.700 3.548 0.000 2.582 0.388 

Maximum 436.112 923.321 80.444 0.000 72.715 31.826 

No. zeros (%) 51.738 53.727 83.752 100.000 71.189 88.212 

 

Whilst undoubtedly useful and important for attempting to 

understand the planktonic phase and the environment of larval dispersal, 

planktonic lice data are difficult to use for model validation. Not only is the 

sampling likely to miss peaks in larval lice densities, but the high spatial 

and temporal variability of planktonic lice numbers, and the zero-inflated 

nature of the data, makes meaningful comparison between model and data 

challenging. To calibrate and validate a model based on comparison with 

time series at point locations requires quasi-continuous data. Monthly 

sampling at a point location, where densities are changing on an hourly 

basis, is not adequate for model calibration; it would require pinpoint 

accuracy in time and space from the model, which is, of course, 

unachievable. Until improved methods of planktonic sampling for larval lice 

are developed, this field sampling approach does not appear to provide 

particularly useful data for model calibration and verification purposes. 

3.10 Forecasting Sea Lice Dispersal using the SSM Climatology  

For management and monitoring purposes, forecasts of sea lice 

dispersal and distributions in the water column may be desirable. However, 

operational weather and hydrodynamic forecasting models rarely run 

reliably more than five days into the future, and predicting the sea lice 
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distributions at the end of a 15-day life cycle is therefore challenging. One 

option is to use historical “average” conditions to eliminate unusual 

dispersal pathways due to abnormal meteorological forcing in a particular 

year. One such set of “average” conditions is available through Marine 

Scotland’s 25-year Scottish Shelf Model climatology (De Dominicis, 2018), 

which provides hourly coastal water circulation, temperature and salinity 

over one year based on average meteorological forcing from 1990 – 2014. 

One known shortcoming of the current version (v2.01) of the SSM 

climatology is that wind stress is persistently from the south-west – there is 

little variability in the wind forcing to drive dispersal. 

We ran the particle tracking model, UnPTRACK, as described above, 

with the WLLS 25-year climatology to predict lice densities over May – 

October 2021 (2021 reflects the timing of the sources of lice, not the 

hydrodynamics which are of course an average). The predicted mean 

copepodid densities for May – June 2021 are shown in Figure 3.22. The 

persistent south-west wind in the climatology leads to enhanced densities 

at the heads of the sea lochs (Melfort and Craignish) and along the eastern 

side of Asknish Bay and around Craobh Haven. Much of Shuna Sound 

contained no (or very low levels of) lice. The prevalence of densities 

exceeding 0.1 lice m-2 also reflected the persistent SW wind (Figure 3.22), 

with very low prevalence through most of the modelled domain and high 

prevalence where predicted densities were also high. These results appear 

to be strongly influenced by the methodology used to calculate the 

climatology, and are probably not a realistic dispersal prediction for these 

inshore waters, where the persistent SW wind traps and holds particles 

against the coast. 
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Figure 3.22 Modelled monthly-mean infective lice density distributions (left) and 

prevalence of densities exceeding 0.1 lice m-2 (right) for May – June. The model 

system was UnPTRACK with the WLLS Climatology.  

 

For completeness, the predicted densities at the 2021 sampling 

locations were compared with the sample data (Figure 3.23). The 

comparison between model and data remains poor, perhaps not 

unexpectedly given the challenges posed by the sampling (as discussed 

above) and the reservations about the climatology. Having said that, given 

that reliable information on the actual sea lice distributions in Shuna Sound  

during 2021 remains elusive, these predicted distributions using the 

climatology cannot categorically be dismissed as wrong or inaccurate.  
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Figure 3.23 Comparison between UnPTRACK modelled and observed copepodid 

densities sampled at the six sites during the field sampling campaign in 2021. Each 

plot represents modelled values calculated using a different radial distance 

centred on the sampling location. The UnPTRACK results here used the WLLS 

Climatology hydrodynamic output. Note that modelled lice densities are given per 

cubic metre (variable depth particles). 

4. Lessons Learned from Bio-Physical Modelling  

Plankton sampling does not appear to provide a robust dataset for 

model calibration given the apparent very high temporal and spatial 

variability of sea lice distributions, which demands (an unachievable level 

of) pinpoint accuracy from models to deliver a positive relationship 

between observed and modelled sea lice larval density. Whilst the plankton 

data are useful and important for characterising the planktonic 

environment and estimating background sea lice densities, plankton 
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sampling cannot, given resource constraints, provide data of sufficient 

spatial and temporal coverage to allow a robust calibration. A comparison 

could be made with Harmful Algal Bloom modelling and management, which 

has benefitted hugely from the synoptic distributions of marine algae 

provided by satellite imagery on a regular basis. Field sampling of 

planktonic sea lice requires comparable innovations in methodology (Bui et 

al., 2021) before adequate in situ data for model calibration can become 

available. 

Given these difficulties, the lack of agreement between model and 

data does not mean the models are wrong; broadly they may still be 

correct. Indeed, the reasonable (though limited) calibration of the 

hydrodynamic models in this workpackage, and the known ability of the 

biological models from test cases to accurately simulate advection and 

diffusion, suggests that the modelled movement of particles (and therefore 

lice) should be broadly correct. Nevertheless, the model combinations 

produce sometimes starkly different predictions of lice distributions 

(Figures 3.13 – 3.14). This is a result of integrating the slightly different 

velocity fields between the models over the (approximately) 15-day 

lifetime of the larval lice: lagrangian modelling integrates small differences 

in modelled velocity into large differences in individual larval transport 

pathways and potentially radically different predicted infective sea lice 

distributions. This poses a challenge for sea lice regulation and 

management: the use of different hydrodynamic models will almost 

certainly result in different predicted distributions of lice, and given 

limitations in the ability to verify the predicted distributions against field 

data, it may be challenging to rationalise conflicting predictions and 

establish reliable assessment of the risks posed by sea lice to wild fish. It is 

important to recognise that neither modelling nor observations alone can 

provide the full truth, whereas viewing them as complementary sources of 
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information and utilising them together may provide a fuller picture of the 

real environment (Skogen et al., 2021; Johnsen et al., 2021). 

In the absence of planktonic field data with sufficient temporal and 

spatial coverage, full calibration and testing of the individual component 

models becomes of utmost importance. In particular, here we have found 

that the modelled distributions of larval lice are very sensitive to the flow 

and scalar fields from the hydrodynamic model. A comprehensive 

calibration of the underlying hydrodynamic model could include 

assessment of the velocity fields against (preferably) multiple current 

profile datasets, comparison of modelled temperature and salinity profiles 

against CTD data, and ideally simulation of lagrangian data from dye or 

drifter release studies. Unfortunately, within this workpackage, data were 

not available for such a full calibration; however, an example of a full 

calibration is given in WP4. 

Particle tracking models also need to demonstrate accuracy in their 

fundamental capabilities. Standard tests exist for demonstrating accuracy in 

advection (Brickman et al., 2009) and diffusion (e.g. North et al. 2006). 

Standard tests do not presently exist for demonstrating accuracy in 

simulating biological behaviour, such as vertical migration, but could be 

developed. Satisfactory calibration in this manner can provide, in the 

absence of appropriate field data, a large degree of confidence that the 

models are capable of simulating sea lice dispersal accurately and that 

predicted results should be broadly realistic. 

The presentation of results from sea lice dispersal models is the 

subject of some debate. Clearly, presenting snapshots of distributions at an 

instant in time may illustrate the potential peak values in lice numbers that 

may sporadically occur but, given the transient nature of such peaks and 

the unreliability of model forecasts on such short temporal scales (compare 
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the differences between model snapshots in Appendix 2), such snapshots 

are not particularly helpful or relevant to sea lice management. Instead, 

mean distributions averaged over a relevant time scale are more 

informative of the risk posed by sea lice to wild fish. That poses the 

challenge of defining suitable timescales: an example may be the migration 

time required for a wild fish to swim through the coastal zone to the open 

sea, which requires knowledge of salmonid migration routes and swimming 

speeds. Such questions are presently the subject of active discussion in 

Scotland. However, such time scales are likely to be of the order of days, or 

even weeks, so longer-term averages offer both a better indication of risk 

to wild fish and reduce the discrepancies between models, although, as we 

have seen, discrepancies still remain. 

When multiple models of sea lice dispersal are available, building an 

ensemble of results from the collective output may provide a more robust 

estimate of risk. The use of ensemble models is explored more thoroughly 

in WP4; here, we took the average of the modelled mean densities from 

five model runs (not including the simulations that used the WLLS 

climatology, Table 3.2). The results highlighted the elevated modelled 

concentrations around Asknish Bay and the coastline around Craobh Haven 

(Figure 3.15). The high values to the west of Shuna Sound  predicted in one 

model run have been moderated by the averaging. Similarly, the zero 

values at the head of Loch Melfort and Loch Craignish predicted by the 

simulations using WestCOMS have increased to moderate levels (~0.1 lice 

m-2). While the modelled ensemble cannot be quantitatively tested, due to 

the challenges with the planktonic sea lice data discussed above, the 

ensemble approach removes some of the idiosyncratic predictions 

associated with individual model predictions. Variability across the 

ensemble was represented here by the coefficient of variation across the 
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five ensemble members (Figure 3.15), and provided a visualisation of areas 

where model results were consistent and areas where they differed. 

5. Conclusions and Next Steps    

5.1 Hydrodynamic modelling for sea lice particle tracking 

Outcomes from sea lice dispersal models depend fundamentally on 

the underlying hydrodynamic model. Sea lice larvae are transported around 

the coastal zone for approximately 15 days. Over these time scales, 

lagrangian modelling can integrate small differences in modelled velocity 

into large differences in individual larval transport pathways and 

potentially radically different predicted infective sea lice distributions. The 

use of different hydrodynamic models, even with identical sea lice dispersal 

models, will almost certainly result in different predicted distributions of 

lice.  

Hydrodynamic modelling of Scottish coastal waters is extremely 

challenging, with complex coastlines, large tides, strong winds and 

intermittent heavy rainfall and river flow all contributing to a dynamic and 

constantly changing coastal ocean environment. The challenge of predicting 

realistic flow fields, water temperature and salinity in this environment 

should not be underestimated. 

5.2 Sea lice dispersal (particle tracking) models  

Particle tracking modelling is a standard modelling methodology that 

has developed over several decades to simulate the advection and 

dispersal of pelagic biota, chemical contaminants and particulate wastes in 

the marine environment. The models are relatively simple, and provided 

that they are carefully coded, should reliably advect and diffuse particles in 
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the flow fields of the ambient environment. There is little reason to think 

that the modelled transport of sea lice larvae by these PT models does not 

accurately reflect that (also modelled) environment. However, as noted 

above, simulation of that hydrodynamic environment is more challenging 

and the outputs more open to question. 

In this work-package, the unsuitablility of the planktonic sea lice data 

for model calibration  and evaluation made it difficult to assess the models 

and the model parameterisation. The models illustrated the high temporal 

and spatial variability of the sea lice distributions in the water column 

explaining, at least in part, the challenge of sampling for sea lice by 

traditional plankton sampling methods. Similar findings and conclusions 

regarding the high spatiotemporal variability of sea lice distributions were 

reported by Skarðhamar et al. (2019). Planktonic sampling at fixed locations 

needs a lot of luck to capture high numbers of lice. This was perhaps 

demonstrated by Nelson et al. (2017), who sampled planktonic lice larvae in 

and around salmon farms in the Bay of Fundy, Canada and collected one 

sample at a reference station containing 255 copepodids; the other 81 

reference samples collected 35 copepodids in total, with a mean larval lice 

density of 0.08 lice m-3. Numerous other planktonic sampling studies have 

found generally low numbers of sea lice in the water column, with 

occasional hot-spots where numbers are higher (see Bui et al., 2021 and 

references therein).  This is characteristic of buoyant material in the ocean, 

such as plastic, which accumulates at convergence zones and is advected 

around the coastal zone by tidal and wind-driven currents. The modelled 

lice distributions in this workpackage suggest that, for much of the time 

(more than 50% in all cases) lice abundances at the sampling locations and 

elsewhere were zero (or, at least, very low).  
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The challenge lies in establishing what infection risk, if any, these 

transient and moving peaks in sea lice larval abundance pose to wild fish 

and how best to quantify that risk. Using time-averaged plots of mean 

density (e.g. Figure 3.17) allows identification of areas which are 

particularly prone to higher sea lice numbers. Defining the period of that 

time-averaging remains a matter of debate, but may be best related in 

some way to migration times of wild fish through an area. These time-

averaged plots do not illustrate the patchy distributions of sea lice in the 

environment, so videos showing hourly locations of sea lice have also been 

produced (see http://marine.gov.scot/information/salmon-parasite-

interactions-linnhe-lorn-and-shuna-spills). 

5.3 Using an ensemble model approach to quantify model 

uncertainty 

Combining the results from a number of model runs, whether using 

different models or the same model with different parameter sets, into an 

ensemble-mean smooths out some of the idiosyncrasies of particular model 

runs and illustrates regions of the domain where the results are more 

consistent, at both high and low densities (Figure 3.15). The coefficient of 

variation (i.e. the ensemble standard deviation divided by the ensemble 

mean) provides a measure of the consistency of the results between 

ensemble members. Thus areas where some models predict high lice 

densities and other models predict low lice densities have a high coefficient 

of variation.  

The ensemble methodology allows some interpretation of the 

uncertainty of model predictions to be made. Based on the results here, this 

seems to be particularly pertinent for the hydrodynamic model outputs, 

which, while absolute differences between modelled flow fields may be 

http://marine.gov.scot/information/salmon-parasite-interactions-linnhe-lorn-and-shuna-spills
http://marine.gov.scot/information/salmon-parasite-interactions-linnhe-lorn-and-shuna-spills
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quite small, may lead to substantial differences between predicted sea lice 

distributions.  The challenges involved in incorporating ensemble methods 

into a management and regulatory regime are recognised. Nevertheless, 

where multiple predictions of sea lice distributions using different 

hydrodynamic models are made, some effort to refine and ascertain the 

robustness of the results will be necessary.  
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7. Appendix 1. Hydrodynamic Model Calibration 

7.1 WLLSshuna 

 

Figure 7.1. Comparison of 15 days of the observed (top) and modelled (bottom) sea surface 

height at the PNG site in Shuna Sound  from June 2021. 

 

 

Figure 7.2. Comparison of 15 days of the observed and modelled East (left) and North (right) 

components of velocity at three depths, near-surface (top), mid-depth (middle) and near-bed 

(bottom) from the PNG site in Shuna Sound  during June 2021. 
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Table 7.1 WLLSshuna model performance statistics for East and North velocity at the PNG site in 

Shuna Sound  at the three depths for the full simulation from 10
th
 June – 11

th
 August 2021. The 

model skill, d2, is the Index of Agreement from Willmott et al. (1985), where 0 ≤ d2 ≤ 1 with 

higher values indicating a better model fit with data. 

    East North 

Sub-surface cell 

Model skill, d2 0.36 0.88 

Mean Absolute Error (MAE) (m/s) 0.03 0.03 

Root-Mean-Square Error (RMSE) 

(m/s) 0.04 0.04 

Mid-depth cell 

Model skill, d2 0.34 0.95 

Mean Absolute Error (MAE) (m/s) 0.02 0.03 

Root-Mean-Square Error (RMSE) 

(m/s) 0.03 0.04 

Near-bed cell 

Model skill, d2 0.44 0.94 

Mean Absolute Error (MAE) (m/s) 0.03 0.03 

Root-Mean-Square Error (RMSE) 

(m/s) 0.03 0.03 
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Figure 7.3. Scatter plots of the observed and modelled velocity at three depths, near-surface 

(top), mid-depth (middle) and near-bed (bottom) from the PNG site in Shuna Sound  during June 

- August 2021. 
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Figure 7.4. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of salinity at the six planktonic sea lice sampling locations from the WLLSshuna 

model. 
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7.2 WeStCOMS 

 

 

Figure 7.5. Comparison of 15 days of the observed (top) and modelled (bottom) sea surface 

height at the PNG site in Shuna Sound  from June 2021. 

 

Figure 7.6. Comparison of 15 days of the observed and modelled East (left) and North (right) 

components of velocity at three depths, near-surface (top), mid-depth (middle) and near-bed 

(bottom) from the PNG site in Shuna Sound  during June 2021. 
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Table 7.2 WeStCOMS model performance statistics for East and North velocity at the PNG site in 

Shuna Sound  at the three depths for the full simulation from 10
th
 June – 11

th
 August 2021. The 

model skill, d2, is the Index of Agreement from Willmott et al. (1985), where 0 ≤ d2 ≤ 1 with 

higher values indicating a better model fit with data. 

    East North 

Sub-surface cell 

Model skill, d2 0.34 0.69 

Mean Absolute Error (MAE) (m/s) 0.03 0.09 

Root-Mean-Square Error (RMSE) 

(m/s) 0.04 0.11 

Mid-depth cell 

Model skill, d2 0.17 0.92 

Mean Absolute Error (MAE) (m/s) 0.04 0.05 

Root-Mean-Square Error (RMSE) 

(m/s) 0.04 0.06 

Near-bed cell 

Model skill, d2 0.79 0.94 

Mean Absolute Error (MAE) (m/s) 0.02 0.04 

Root-Mean-Square Error (RMSE) 

(m/s) 0.03 0.05 
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Figure 7.7. Scatter plots of the observed and modelled velocity at three depths, near-surface 

(top), mid-depth (middle) and near-bed (bottom) from the PNG site in Shuna Sound  during June 

- August 2021. 
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Figure 7.8. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Asknish Bay from the WeStCOMS model. 
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Figure 7.9. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Eilean Arsa from the WeStCOMS model. 
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Figure 7.10. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Loch Melfort from the WeStCOMS model. 
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Figure 7.11. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Musgan from the WeStCOMS model. 
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Figure 7.12. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at NE Shuna from the WeStCOMS model. 
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Figure 7.13. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Southern Approaches from the WeStCOMS 

model. 
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7.3 WLLS 2021 

 

 

Figure 7.14. Comparison of 15 days of the observed (top) and modelled (bottom) sea surface 

height at the PNG site in Shuna Sound  from June 2021. 

 

 

Figure 7.15. Comparison of 15 days of the observed and modelled East (left) and North (right) 

components of velocity at three depths, near-surface (top), mid-depth (middle) and near-bed 

(bottom) from the PNG site in Shuna Sound  during June 2021. 
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Figure 7.16. Scatter plots of the observed and modelled velocity at three depths, near-surface 

(top), mid-depth (middle) and near-bed (bottom) from the PNG site in Shuna Sound  during June 

- August 2021. 
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Table 7.3 WLLS-2021 model performance statistics for East and North velocity at the PNG site in 

Shuna Sound  at the three depths for the full simulation from 10
th
 June – 11

th
 August 2021. The 

model skill, d2, is the Index of Agreement from Willmott et al. (1985), where 0 ≤ d2 ≤ 1 with 

higher values indicating a better model fit with data. 

    East North 

Sub-surface cell 

Model skill, d2 0.41 0.75 

Mean Absolute Error (MAE) (m/s) 0.03 0.04 

Root-Mean-Square Error (RMSE) 

(m/s) 0.04 0.06 

Mid-depth cell 

Model skill, d2 0.32 0.78 

Mean Absolute Error (MAE) (m/s) 0.02 0.05 

Root-Mean-Square Error (RMSE) 

(m/s) 0.03 0.06 

Near-bed cell 

Model skill, d2 0.58 0.79 

Mean Absolute Error (MAE) (m/s) 0.02 0.05 

Root-Mean-Square Error (RMSE) 

(m/s) 0.03 0.05 
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Figure 7.17. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Asknish Bay from the WLLS-2021 model. 

 



86 
 

 

 

Figure 7.18. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Eilean Arsa from the WLLS-2021 model. 
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Figure 7.19. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Loch Melfort from the WLLS-2021 model. 
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Figure 7.20. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Musgan from the WLLS-2021 model. 

 



89 
 

 

 

Figure 7.21. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at NE Shuna from the WLLS-2021 model. 
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Figure 7.22. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Southern Approaches from the WLLS-2021 

model. 
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7.4 WLLS Climatology 

 

 

 

Figure 7.23. Scatter plots of the observed and modelled velocity at three depths, near-surface 

(top), mid-depth (middle) and near-bed (bottom) from the PNG site in Shuna Sound  during June 

- August 2021. 
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Figure 7.24. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Asknish Bay from the WLLS Climatology model. 
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Figure 7.25. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Eilean Arsa from the WLLS Climatology model. 
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Figure 7.26. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Loch Melfort from the WLLS Climatology model. 
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Figure 7.27. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Musgan from the WLLS Climatology model. 
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Figure 7.28. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at NE Shuna from the WLLS Climatology model. 
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Figure 7.29. Comparison of the observed (top, Reinardy et al., 2023) and modelled (bottom) 

monthly profiles of temperature and salinity at Southern Approaches from the WLLS 

Climatology model. 
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8. Appendix 2. Additional sea lice dispersal model validation 

figures 

 

 

 
Figure 8.1. Modelled infective lice distributions (lice m-3) at two-hourly intervals during the 

afternoon of 13th October 2021 using the UnPTRACK-WLLSshuna modelling system. The plots 

illustrate the continually changing distribution of lice in Shuna Sound due to advection by the 

combination of tidal, wind-driven and freshwater-driven currents. The densities were calculated 

over the surface 2m on a 250m x 250m grid. 
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Figure 8.2. Modelled infective lice distributions (lice m-2) at two-hourly intervals during the 

afternoon of 13th October 2021 using the Biotracker-WestCOMS modelling system. The plots 

illustrate the continually changing distribution of lice in Shuna Sound due to advection by the 

combination of tidal, wind-driven and freshwater-driven currents. The densities were depth-

integrated and calculated on a 250m x 250m grid. 
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Figure 8.3. Modelled infective lice distributions (lice m-2) at two-hourly intervals during the 

afternoon of 13th October 2021 using the FISCM-WLLS2021 modelling system. The plots 

illustrate the continually changing distribution of lice in Shuna Sound due to advection by the 

combination of tidal, wind-driven and freshwater-driven currents. The densities were depth-

integrated and calculated on a 250m x 250m grid. 
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Figure 8.4. Modelled infective lice distributions (lice m-3) at two-hourly intervals during the 

afternoon of 13th October 2021 using the UnPTRACK-WestCOMS modelling system. The plots 

illustrate the continually changing distribution of lice in Shuna Sound due to advection by the 

combination of tidal, wind-driven and freshwater-driven currents. The densities were calculated 

over the surface 2 m on a 250m x 250m grid. 
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Figure 8.5. Modelled infective lice distributions (lice m-3) at two-hourly intervals during the 

afternoon of 13th October 2021 using the UnPTRACK-WLLS2021 modelling system. The plots 

illustrate the continually changing distribution of lice in Shuna Sound due to advection by the 

combination of tidal, wind-driven and freshwater-driven currents. The densities were calculated 

over the surface 2 m on a 250m x 250m grid. 
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Figure 8.6. Modelled infective lice distributions (lice m-3) at two-hourly intervals during the 

afternoon of 13th October 2021 using the UnPTRACK-WLLS Climatology modelling system. The 

plots illustrate the distributions of lice in Shuna Sound in response to advection by the 

combination of tidal, wind-driven and freshwater-driven currents. The densities were calculated 

over the surface 2 m on a 250m x 250m grid. 
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