
Differences arising from the application of the Southall and NOAA criteria to risk assessment of permanent auditory injury in marine mammals

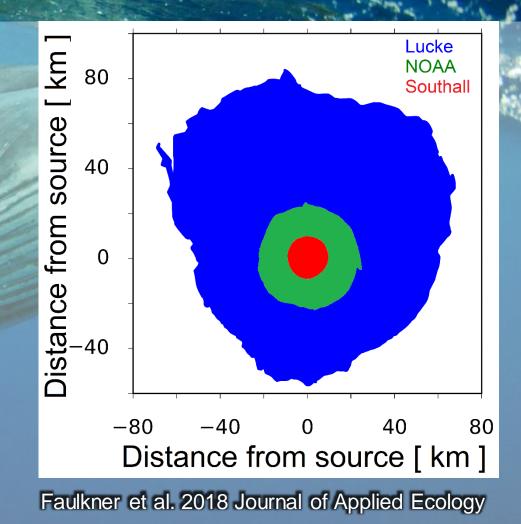
Initial Scientific Economic Laboratoria Supported through Joint Sponsorship by the European Association for Aquaritatic Mammals, the Alliance of Marine Mammal Parks and Aquaritanis, and the International Marine Animal Trainer's Association Founded by EAAM in 1974

Rebecca Faulkner Adrian Farcas <u>Nathan Merchant</u> Cefas Noise & Bioacoustics Team Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing

Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service

NOAA Technical Memorandum NMFS-OPR-55 July 2016



Centre for Environment Fisheries & Aquaculture Science

Context

- First thresholds defined by NOAA in late 1990s: 180 dB re 1 μPa (RMS SPL) for pinnipeds and 190 dB re 1 μPa for cetaceans
- First major marine mammal noise exposure criteria published by Southall et al. (2007)
- In 2016, the US National Marine Fisheries Service (part of NOAA) issued updated guidance based on an extensive peer-review exercise
- 'NOAA criteria' apply to temporary or permanent loss in hearing sensitivity in marine mammals exposed to acute noise exposure
- Uncertainty among regulators and SNCBs over differences between criteria and implications for EIA
- In 2018, Marine Scotland commissioned Cefas to undertake further work to investigate differences in representative UK contexts. Scottish Natural Heritage also on steering group.

Overview

Context
5 functional hearing groups
Dual criteria
Thresholds and weightings
Modelling scenarios
Differences by source type
Differences with propagation from source

Key differences between Southall and NOAA

Southall et al (2007)

4 functional marine mammal hearing groups:

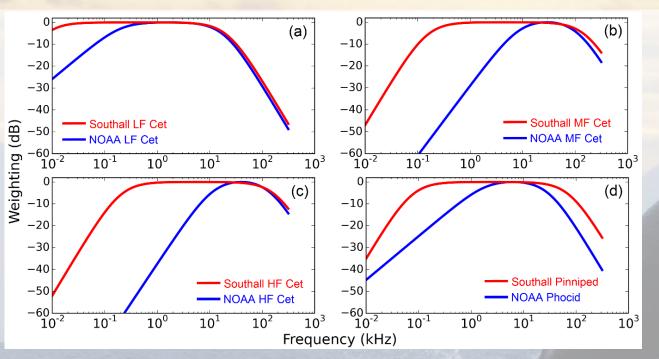
- LF cetaceans
- MF cetaceans
- HF cetaceans
- Pinnipeds in water [Pinnipeds in air]

NOAA (2016)

5 functional marine mammal hearing groups:

- LF cetaceans
- MF cetaceans
- HF cetaceans
- Phocid Pinnipeds underwater (true seals)
- Otariid Pinnipeds underwater (sea lions and fur seals)

Centre for Environment Fisheries & Aquaculture Science


Dual PTS criteria: peak and cumulative sound levels

- 1. Peak sound level thresholds (unweighted)
- 2. Cumulative sound exposure criteria (weighted for functional hearing group); different thresholds for pulse and non-pulse sound

Peak sound level thresholds: Southall vs. NOAA

Hearing group	Southall 2007	NOAA 2016			
LF cetacean	230	219			
MF cetacean	230	230			
HF cetacean	230	202			
Phocid	218	218			
Otariid	218 232				
	Units: dB re 1 µPa (peak ; unweighted)				

Cumulative exposure: Thresholds and weightings

If weighting removes less sound from spectrum, criteria are more conservative

If threshold is lower, criteria are more conservative

Both factors influence predictions Dependent on spectral distribution of received sound level Cumulative sound exposure criteria have two components:

1. Weightings for each functional hearing group

Subtract sound from spectrum according to hearing sensitivity of functional hearing group

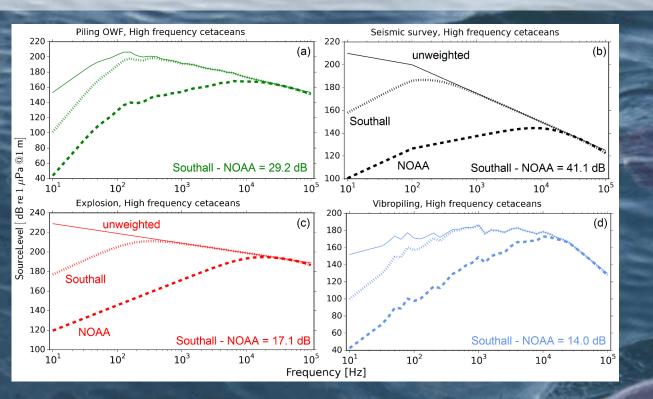
2. Sound level thresholds (weighted)

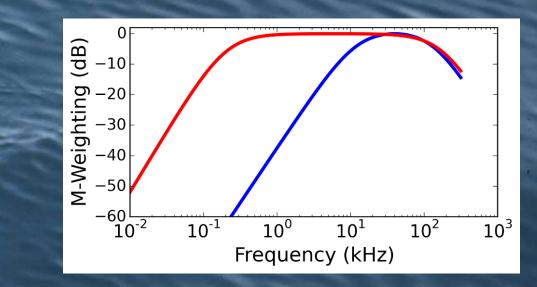
Define weighted sound level at which effect (e.g. permanent threshold shift; PTS) is predicted to occur, e.g. 198 dB re 1 μ Pa² s (weighted)

Modelling scenarios

Scenario	Source Type	Source Data	Temporal Properties for 24-h SEL _{cum}	Typical Location	Water Depth	Sediment Type		Scenari o Number
Pile driving Offshore Wind Farm	Percussive pile driving hammer 3,000	(validated by Cefas in	Typical monopile hammer energy profile including	Northern North Sea	50 m at source, sloping to 100 m at 100 km	Sand	Year round	1
(OWF)	kJ	Ainslie et al. (2012)	ramp-up, 2 piles in 24-h	Southern North Sea	30 m flat bottom	Sand	Year round	2
Pile driving inshore port works	Percussive pile driving (200 kJ inferred by Nigg piling study; 200 dB @1m)	Source model (validated by Cefas in Scottish waters): Ainslie et al. (2012)	Four hours of piling (during daylight), repetition rate: 1 strike per second (from Nigg study)	Scottish coast	10 m at source, sloping to 70 m at 100km range	Gravelly sand	Year round	3
	Vibratory pile driving	Measurements on Scottish coast: Graham et al. (2017)	Four hours of piling (during daylight)	Scottish coast	10 m at source, sloping to 70 m at 100km range	Gravelly sand	Year round	4
Unexploded Ordnance	Exploding charge mass;	Empirical source model: Soloway &	One event in 24 hours	Northern North Sea	60 m, flat bottom	Sand	Year round	5
(UXO) detonation	250 kg Dahl (2014)		Southern North Sea	30 m flat bottom	Sand	Year round	6	
Seismic survey	Seismic airgun array	Source model: Erbe & King (2009)	24-h operation, 8- second shot	Northern North Sea	80 m, flat bottom	Sand	Year round	7
			interval	North-East Atlantic	150 m, flat bottom	Gravelly sand	Year round	8

Centre for Environment Fisheries & Aquaculture Science


Results


<u>Differences by source type</u>
Differences due to sound propagation

Centre for Environment Fisheries & Aquaculture Science

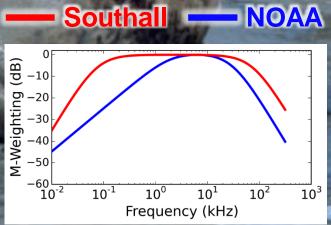
High-frequency cetaceans

Southall ---- NOAA

Weightings differ substantially at **low** frequencies

Weightings differ by **17.1 to 41.1 dB** (impulsive) and **14 dB** (vibropiling; Graham et al 2017)

High-frequency cetaceans


NOAA criteria are more precautionary for HF cet for both impulsive and non-impulsive sounds

Criterion	Southall	NOAA	Difference (dB)
Peak SPL, PTS	230	202	-28
Cumulative SEL PTS Threshold Impulsive	198	155	-43
Cumulative SEL Weighting			17.1 to 41.1
Cumulative SEL Difference Impulsive			-25.9 to -1.9
Cumulative SEL PTS Threshold Non-Impulsive	215	173	-42
Cumulative SEL Weighting			14.0
Cumulative SEL Difference Non-Impulsive			-28.0

Phocid seals

NOAA criteria are less precautionary for phocid seals for both impulsive and non-impulsive sounds

ч.	Criterion	Southall	NOAA	Difference (dB)
	Peak SPL, PTS	218	218	0
	Cumulative SEL PTS Threshold Impulsive	186	185	-1
	Cumulative SEL Weighting			10.7 to 18.4
A 1	Cumulative SEL Difference			9.7 to 17.4
	Cumulative SEL PTS Threshold Non-Impulsive	203	201	-2
	Cumulative SEL Weighting			3.5
) 0 ³	Cumulative SEL Difference Non-Impulsive			1.5

Differences by source type: Summary

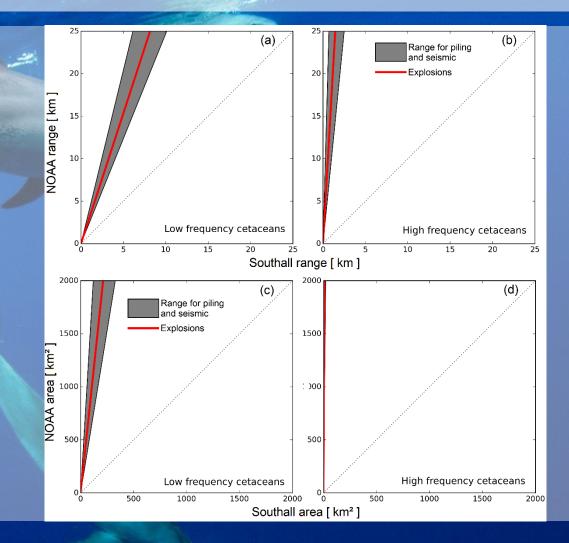
- NOAA more precautionary than Southall for LF Cet and HF Cet
- Phocid seals are either the same or less conservative
- MF Cet are either the same or less conservative

	Low- Frequency Cetaceans	Mid- Frequency Cetaceans	High- Frequency Cetaceans	Phocid seal
Peak SPL threshold for PTS	-11	0	-28	0
Cumulative SEL Impulsive	-11.6 to -1.8	3.6 to 25.3	-25.9 to -1.9	9.7 to 17.4
Cumulative SEL Non-Impulsive	-15.5	-5.8	-28.0	1.5

Results

Differences by source type
Differences due to sound propagation

Centre for Environment Fisheries & Aquaculture Science

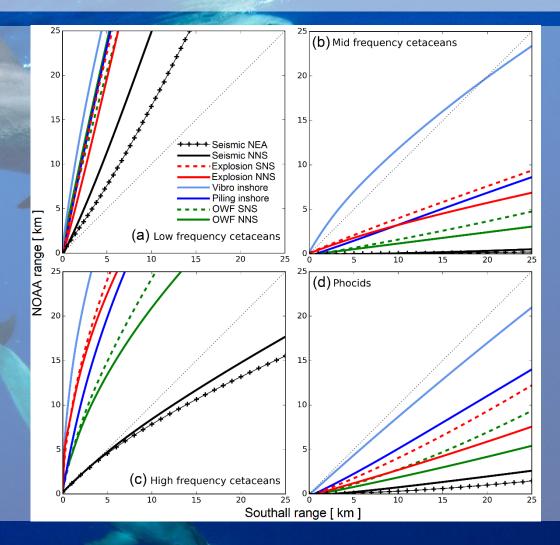


Differences with propagation distance: peak SPL

- Peak SPL criterion
 - Only **low-** and **highfrequency** cetaceans have difference peak SPL criterion

and the second second

- Plots show how range predicted with one criterion approximately translates to range with the other criterion
- Area is the more relevant than range when considering number of animals affected

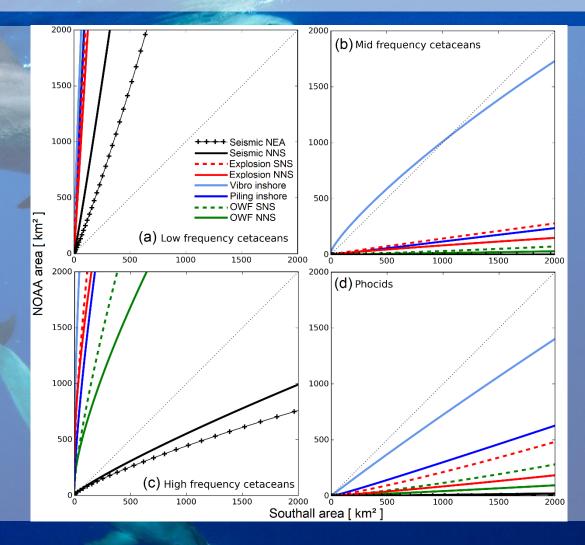


Differences with propagation distance: SELcum

Cumulative SEL criterion

and the second second

Plots show how range predicted with one criterion approximately translates to range with the other criterion



Differences with propagation distance: SELcum

Cumulative SEL criterion

and the second second

- Plots show how area predicted with one criterion approximately translates to area with the other criterion
- Area is the more relevant than range when considering number of animals affected

Conclusions

- NOAA more precautionary than Southall for LF Cet and HF Cet
- Phocid seals are either the same or less conservative
- MF Cet are either the same or less conservative

	Low-Frequency Cetaceans	Mid-Frequency Cetaceans	High-Frequency Cetaceans	Phocid seal
Peak SPL threshold for PTS	-11	0	-28	0
Cumulative SEL Impulsive	-11.6 to -1.8	3.6 to 25.3	-25.9 to -1.9	9.7 to 17.4
Cumulative SEL Non- Impulsive	-15.5	-5.8	-28.0	1.5

Disclaimer: Caution should be exercised to avoid applying these results too widely or with unwarranted precision: the absolute decibel differences reported for the criteria should be broadly similar for other similar environments and sources, but variability should be expected according to the specifics of any particular modelling scenario

Centre for Environment Fisheries & Aquaculture Science

