
Transportation of egg requirements

1 Conservation limits

In line with recommendations from NASCO, conservation limits of a given stock are set
based on the estimated maximum sustainable yield (MSY) of that stock. This biological
reference point is the spawning stock size that maximises the mean annual catch. It is
determined by modelling the relationship between spawning stock and recruitment (the SR
relationship) over multiple years, and is the value that maximises the difference between the
SR relationship and the replacement line (Figure 1).

Previous analyses have demonstrated that there is considerable river to river variation in MSY
across European populations, specifically related to latitude (White et al. 2016; Prévost et al.
2003). Figure 2 shows a preliminary analysis of 11 Scottish rivers and sub-catchments with
point estimates for stock at MSY derived from independently fit Ricker curves, plotted against
latitude. There is substantial variation from river to river within Scotland, consequently a
“one size fits all” model may not be appropriate. However, defining appropriate conservation
limits for rivers without data is non-trivial, motivating the development of a model that can
explain the variation in MSY between Scottish rivers and predict the MSY of unseen rivers
given some explanatory covariates.

2 Bayesian heirarchical modelling framework

Whilst the stock-recruitment relationships vary from river to river, it is assumed that there
may exist a degree of similarity among Scottish rivers. The use of a Bayesian hierarchical
modelling framework can account for this structure. In this framework parameters at the
level of the river can be modelled to be drawn from a national level hyper-distribution. This
not only allows the between river variation to be quantified, but also allows data from each
river to inform the SR relationships of other rivers. This is particularly useful for helping to
improve parameter estimation for data-poor rivers, by borrowing information from data-rich
rivers. Finally, the Bayesian modelling framework provides a more informative process for
modelling uncertainty than traditional statistical modelling techniques.

To model the SR relationships of available rivers, the widely used Ricker relationship is
adopted:

R = eh∗

1 − h∗Se
−h∗
S∗ S

where S is the spawning stock and R is the recruits. Here the classical model is reparameterised
in terms of the stock and harvest rate at MSY, S∗ and h∗, following Schnute and Kronlund
(1996) (Figure 1).
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Figure 1: An example SR relationship modelled as a Ricker curve (solid black) with the
replacement line R=S (dashed), stock at MSY S* (dotted) and harvest at MSY h* (red).
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Figure 2: Preliminary point estimates of stock at MSY for 11 Scottish rivers and sub-
catchments against latitude, derived from independent Ricker models. Existing egg require-
ment in blue.
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Figure 3: Stock recruitment data for the 11 rivers and sub-catchments used in model fitting.
Note that x and y axis differ between rivers.
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2.1 Transportation of egg requirments with covariates

Adult to adult data on the abundance of stock and recruitment is available for only 11
monitored stocks around Scottland, consisting of 6 rivers and 5 sub-catchments (Figure 3).
Consequently, modelling is required to transport conservation limits from stocks with data
to those without. By including environmental and geographic covariates available for all
rivers in the modelling process, conservation limits for non-monitored rivers without data
may be predicted.

Covariates available for all rivers:

a) Latitude
• Latitude of trap/counter.

b) Height
• Information on the heights of the land present in each of the catchments was

taken from the Ordnance Survey Terrain 50 data set (https://data.gov.uk/
dataset/0a318a38-84c1-4509-be79-bc80f71a8aad/os-terrain-50-dtm). This con-
tains heights for points in a 50m DTM grid. For each catchment the proportion
of such points within a 100m band was estimated. Principle components analysis
was used to reduce this banding into a single explanatory variable which explained
61% of the variation in the data set.

c) Catch per area (CPA)
• Historical information on the catches of salmon in each of the districts in Scotland

was used to potentially provide information on geographic changes in the relative
productive capacity of rivers across Scotland. Catches were available for each
district for the period 1952-2016. Catch per area was defined as the 80th percentile
of the time series divided by the area of salmon habitat.

d) Land usage
• Information on land cover was taken from the 2015 Land Cover Map pro-

duced by CEH (https://www.ceh.ac.uk/sites/default/files/LCM2015_Dataset_
Documentation_22May2017.pdf). Land cover was broken into the proportion
of 10 different land use types in each 1km grid square covering the UK. This
information was used to estimate the proportion of each land use type in each
of the conservation regulations assessment areas. Principle components analysis
was used to reduce the 10 different variables into 1, which explained 60% of the
variation in the data set.

e) Ratio of lacustrine to fluvial habitat (Loch)
• The ratio of still to flowing water in each catchment.

f) Distance around coast (DAC)
• This metric was included based on the assumption that close by rivers may be

more likely to have similar values of S* than those at a distance. In order to
incorporate this information a simple metric was constructed by using latitude.
For rivers on the East Coast the metric was simply the latitude minus 54.5 degrees.
After the River Thurso the metric became the East coast distance (58.62 – 54.5)
added to the difference between the most northerly latitude (58.62) and the
latitude of the river mouth in question.

With the exception of the distance around coast, these covariates are included in the model
through the introduction of a linear relationship between both S∗ and h∗ and the value of
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the covariate of interest (x) for a given river. Following Prévost et al. (2003) and White et
al. (2016), S∗ is modeled to have a log-normal distribution and h∗, being bounded between
0 and 1, has a beta distribution. Specifically, for river i with covariate xi, S∗ and h∗ are
given by:

S∗
i ∼ lognormal(αS + βSxi, σ)

and

µi = logit−1(αh + βhxi)
h∗

i ∼ beta(µiφ, (1 − µi)φ)
where σ is a variance parameter for S∗ and φ is a precision parameter for h∗ and the
parameters αS , αh, βS , βh define the linear relationship for that covariate.

The distance of the site around the coast was incorporated as a Bayesian P-spline smoother
term (Lang and Brezger 2004) allowing for a non-linear spatial relationship between estimates
of S∗ and h∗. The smoother term was added to the model in a similar linear way to the
other covariates.

In addition, the wetted area for each river was implicitly included in the model by converting
recruits and spawners to egg densities.

2.2 Assessing the predictive value of covariates

To evaluate whether a particular covariate is informative about the SR relationship for
those rivers with no data, an assessment of the predictive accuracy of each covariate was
made. This was performed using a leave-one-group-out cross-validation process, whereby, for
each covariate combination, a model was fit to data from 10 of the 11 monitored rivers and
sub-catchments, with the predictions of the resultant model compared to the SR relationship
of the excluded river. This process can summarised in the following steps:

1. Remove one river from the data set
2. Fit the hierarchical model to the remaining rivers
3. Use the fitted model to predict the data of the held out river using the covariate

relationships defined above
4. Quantitatively compare these predictions to the actual data for that river
5. Repeat, excluding a different river until all rivers have been excluded
6. Determine a cross validation score for the model via a weighted sum of the likelihood

of unseen data for each unseen river, taking into account the amount of data available.

The cross validation score for each model quantifies how well that model predicts unseen
rivers and, though it has no meaningful absolute value, can be compared to other models fit
using different covariates.

Compared to the traditional approach of looking for covariates with significant predictors,
this method of assessing models based on their ability to predict unseen rivers is preferable
as it replicates the intended use of the model and is much less prone to over-fitting to the
available data.
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2.3 Models

A suite of models were run and compared using the above method. The models tested
consisted of a ‘null’ model with no covariates, a model for each of the covariates (a-f)
individually, and a model for all possible pairs of covariates (a-f). The null model here
represents a scenario of a “one size fits all” S∗, applying the same egg requirement to all
rivers.

3 Results

Models had improved predictive performance over the null model only when either distance
around the coast or catch per area were included as a covariate (Table 1). Furthermore,
only the inclusion of catch per area with distance around the coast gave better peredictive
performance than distance around the coast alone. Whilst there is a strong correlation
between these two covariates, the fact that including both in a model leads to improved
predictive performance over either in isolation suggests that both covariates provide unique
predictive contributions. In particular, the spline for distance around the coast allows for
variable degrees of certainty in model predictions around the coast, which is not possible
with the inclusion of a linear predictor for catch per area.

The poor predictive performance achieved by the use of other covariates suggests either a
lack of a relationship or a degree of over-fitting, generating poor predictions for out of sample
rivers. This includes latitude, which has previously been used to transport egg requirements
at larger spatial scales (Prévost et al. 2003; White et al. 2016).

Figure 4 shows the results of the best predictive model with both the distance around the
coast as a smooth P-spline and catch per area as a linear covariate, fit on the entire data set.
The plots give the distribution of the predicted S∗ for rivers in four scenarios; south east
and south west coast with high and low catch per area.

There is a positive relationship between catch per area and predicted S∗. and a slight decline
in the median predicted S∗ for rivers in the south west compared to the south east. The
uncertainty in S∗ generally exceeds the range of the previous conservation limit. However,
the results from the model provide more informative estimates than the previous uniform
conservation limit, returning non-uniform distribution, with greater probability density
around the median value.

6



Table 1: The predictive performance (CV Score) and performance
relative to the null model (Null ∆ CV) for all models tested. Covari-
ates indicates covariates (a-f) included as predictors in the model,
DAC = distance around coast (smoother), CPA = catch per area,
Loch = ratio of lacustrine to fluvial habitat.

Covariates CV Score Null ∆ CV
DAC, CPA -24,998 555
DAC -25,153 399
DAC, Latitude -25,244 309
DAC, Height -25,278 275
CPA -25,351 202
DAC, Land usage -25,503 50

-25,553 -
Height, CPA -25,620 -67
DAC, Loch -25,720 -167
CPA, Land usage -25,775 -222
Latitude -25,853 -301
Latitude, CPA -25,929 -376
Land usage -26,063 -510
Latitude, Land usage -26,096 -543
CPA, Loch -26,385 -832
Height, Latitude -26,433 -880
Height -26,555 -1,002
Height, Land usage -26,565 -1,012
Latitude, Loch -26,764 -1,211
Loch -26,778 -1,225
Loch, Land usage -27,099 -1,547
Height, Loch -27,711 -2,159
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Figure 4: Median (filled circle), 50%, 70% and 90% prediction intervals (wide and dark to
narrow and light regions) for S∗ from the model including CPA and a distance around coast
smoother for rivers with low and high CPA and on the SE coast and SW coast. Existing egg
requirements shown in blue.
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