

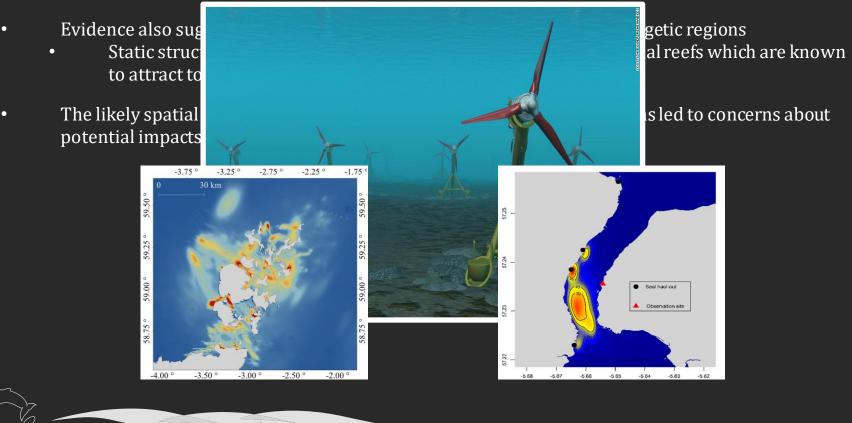
Empirical determination of severe trauma in seals from collisions with tidal turbine blades.

Joe Onoufriou, Dave Thompson, Andrew Brownlow, Carol Sparling, Simon Moss & Gordon Hastie

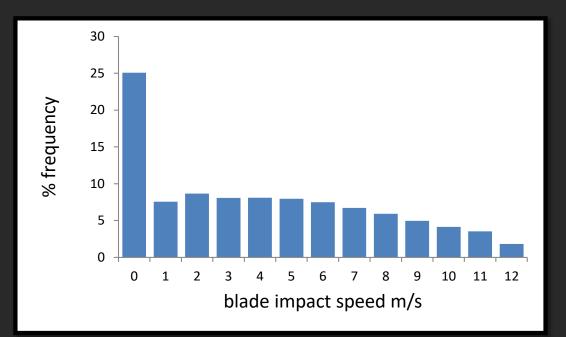
Special thanks to ...

Field trials team: **Matt Bivins, Steve Balfour, Alex Coram.**

Sample collection and analysis: Nick Davison, Mariel ten Donetsche, Simon Northridge, Alex Coram.

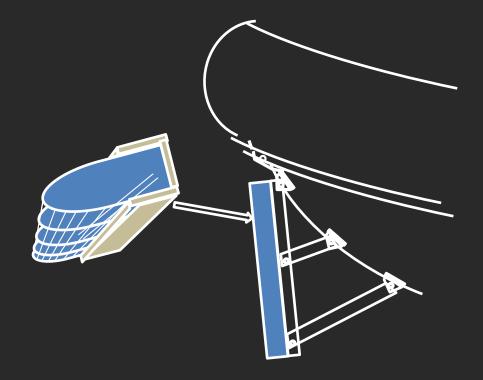


Background


- Tidal stream energy extraction is being developed in several countries; this is typically carried out using large floating or seabed-mounted turbines that extract kinetic energy from tidally-driven, moving water and may require being installed in arrays in order to maximise efficiency.
- Several of these designs have been identified as potentially lethal to a range of marine megafauna

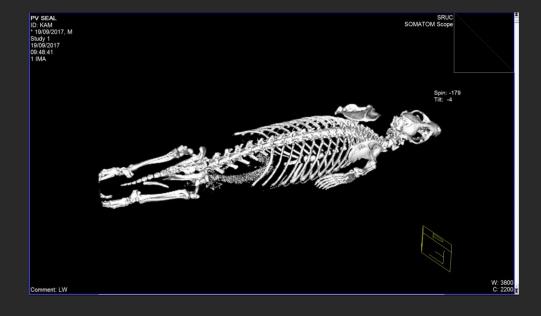
Assessing mortality

- Physical damage can be hypothesised using morphometrics derived from pathological analysis
- o Blunt force trauma and skeletal vulnerability difficult to resolve hypothetically
- o Empirical determination is more robust given an accurate experimental design
 - Blade speeds and shape would suggest varying degrees of collision severity.



And now for something completely different....

Design concept



Pre-trial assessments

Trial set-up

Trial results

2016

2017

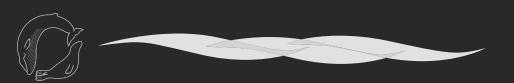
15.5 Kn (7.97 m.s⁻¹)

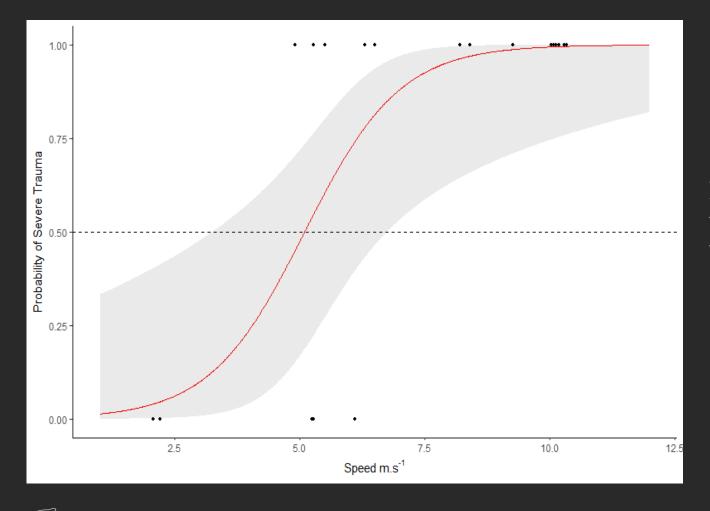
Head

Seal ID	Seal Trial #	Collision Speed	Collision location	Seal ID	Seal Trial #	Collision Speed	Collision location	
HJ05	1	18 Kn (9.26 m.s ⁻¹)	Lower Jaw		1	9.5 Kn (4.89 m.s ⁻¹)	Central Spine	
	2	18 Kn (9.26 m.s ⁻¹)	Thoracic Spine	TA04	2	10.9 Kn (5.6 m.s ⁻¹)	Missed	
HJ08	3	19.8 Kn (10.19 m.s ⁻¹)	•		3	10.2 Kn (5.25 m.s ⁻¹)	Lower Pelvis	
				HJ02	4	10.7 Kn (5.5 m.s ⁻¹)	Lower spine/Pelvis	
		19.7 Kn (10.13 m.s ⁻¹)	Ventral Thorax	11/02	5	10.6 Kn (5.45 m.s ⁻¹)	Central Spine	
JG10	5	19.6 Kn (10.08 m.s ⁻¹)	Thoracic Spine	JG07	6	12.3 Kn (6.33 m.s ⁻¹)	Central Spine	
	6	19.5 Kn (10.03 m.s ⁻¹)	Dorsal pelvic region	JG06	7	12.6 Kn (6.48 m.s ⁻¹)	Lower Spine/Pelvis	
HJ07	7	19.5 Kn (10.03 m.s ⁻¹)	Upper Ventral Thorax	TA03	8	11.8 Kn (6.07 m.s ⁻¹)	Neck	
	8	20.1 Kn (10.34 m.s ⁻¹)	Cervical spine	TAUS	9	13.2 Kn (6.79 m.s ⁻¹)	Pelvis	
	9	20 Kn (10.29 m.s ⁻¹)	Thoracic Spine	HJ01	10	15.9 Kn(8.18 m.s ⁻¹)	Lower Spine/Pelvis	
HJ09			•		11	13.8 Kn (7.1 m.s ⁻¹)	Central Spine	
	10	19.8 (10.19 m.s ⁻¹)	Thoracic Spine	11j05	12	14.6 Kn (7.51 m.s ⁻¹)	Neck/Shoulders	
	11	19.4 Kn (9.98 m.s ⁻¹)	Dorsal Pelvic Region	1002	13	10.9 Kn (5.61 m.s ⁻¹)	Lower spine/Pelvis	
				JG03	14	10.3 Kn (5.3 m.s ⁻¹)	Neck/Shoulders	
				Pv	15	16.4 Kn (8.44 m.s ⁻¹)	Central Spine	
					16	15.6 Kn (8.03 m.s ⁻¹)	Pelvis	

17

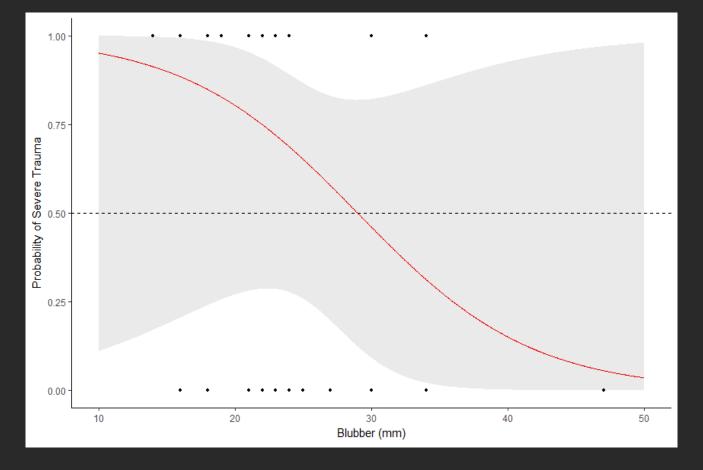
Pathology





Damage inflicted

Seal ID	Mean Collision Speed (m.s ^{.1})	Diaphrag- matic Rupture	Spinal Fracture	Fractured Rib(s)	Liver Rupture	Liver Herniation	Pulmonary Rupture	Cardiac Rupture
HgB	2.1							
HgA	2.4							
TA04	5.2							
HgC	5.25							
HJ02	5.5							
JG03	5.5							
JG07	6.3							
JG06	6.5							
TA03	6.5							
HJ03	7.3							
PvDV	8.1							
HJ01	8.2							
HJ05	9.26							
JG10	10							
HJ09	10.1							
HJ08	10.2							
HJ07	10.2							



Predictions

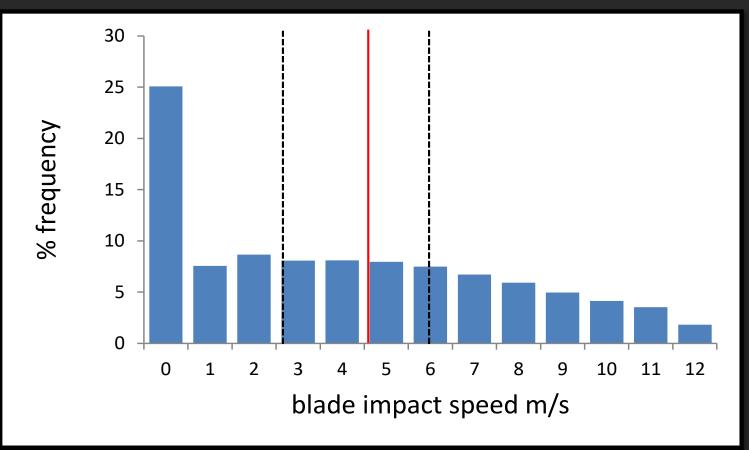
Point estimate of likelihood of severe trauma being greater than a benign impact at 5.1 m.s⁻¹

Predictions

Seems fitness of the seal may play a role in their ability to withstand trauma however signal too weak to say for certain...

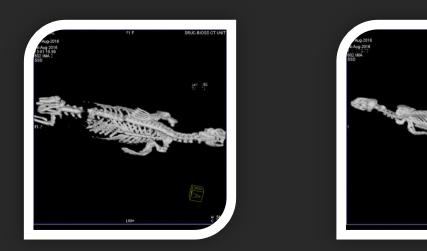


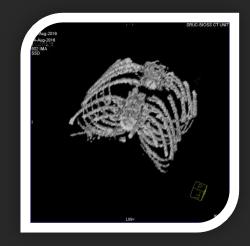
Predictions


Proportion of a blade swept area estimated to cause severe trauma. Maximum proportion reaches asymptote at ~ 0.5 .

This highlights the requirement for adjustment to various devices and environments.

Implications


Threshold for severe skeletal trauma suggests that at least 39% of collisions would be fatal



Summary

- Collisions between seals and tidal turbines can be lethal
 - The speeds at which fatality is guaranteed are not likely to be enduring over a typical tidal cycle
- We can use these data to refine collision risk models to identify the population level consequences of direct interactions with tidal turbines
- A better understanding of less dramatic injuries are required to provide a more robust estimate.
- \circ $\$ Need to resolve the issue of concussion

