Scottish House Condition Survey 2015: Key Findings

Includes updated fuel poverty rates, energy efficiency ratings, carbon emissions, Scottish Housing Quality Standard and disrepair.


3. Energy Efficiency

48. The energy efficiency of a dwelling depends on its physical characteristics. Factors such as the age of construction, the dwelling type, the heating and hot water systems in use and the extent to which the building fabric is insulated, all affect energy efficiency .

49. Based on information about the characteristics of the dwelling collected in the SHCS physical survey, and using some standard assumptions about the make-up and the behaviour of the occupying household, the energy consumption associated with the dwelling is modelled. This allows to make comparisons of energy use, emissions and energy efficiency ratings between dwellings that are independent of occupant behaviour. Further details on the methodology underpinning these measures of energy efficiency are provided in the Methodology Notes [11] .

50. In this chapter we report on analysis of:

  • levels of insulation in Scottish dwellings ( section 3.1);
  • Energy Efficiency Ratings ( EER), also known as SAP ratings ( section 3.3);
  • modelled CO 2 emissions from dwellings ( section 3.5); and
  • Environmental Impact Ratings ( section 3.6).

3.1 Insulation Measures

  • The majority of loft spaces are insulated. As of 2015, at least 100 mm of loft insulation is installed in an estimated 92% of lofts. This is an increase of 10 percentage points on 2010 levels
  • 8% of lofts (an estimated 144,000 dwellings) have less than 100 mm of insulation or no insulation at all and would benefit from retrofit or top up measures. This is similar to 2014.
  • Lofts with a high standard of insulation (300 mm or more) continue to show a significant year on year increase. In 2015 32% of lofts were insulated to this standard, an increase of 5 percentage points from 2014.
  • The proportion of insulated cavity walls recorded by the SHCS was 71% in 2015. This is similar to the previous year. In the longer term the share of insulated cavity walls has grown by 9 percentage points since 2010 and 6 percentage points since 2011.
  • The proportion of solid wall dwellings with insulation was 11% in 2015. No increase since 2014 was recorded by the survey.
  • There still remains a significant difference in the uptake of wall insulation measures between the private and social sectors.

51. Installing or upgrading insulation is one of the most effective ways to improve the energy efficiency of a building. The Energy Saving Trust estimates that an un-insulated dwelling loses a third of all its heat through the walls and a further quarter through the roof [12] . As a result, insulation can significantly increase thermal comfort and reduce heating bills.

52. Additional insulation is most commonly added to a property through the insulation of loft spaces and by adding insulating material to external walls.

3.1.1 Loft Insulation

53. Since 2010, an overall improvement in loft insulation has occured. The proportion of all housing with 100 mm or more of loft insulation increased 10 percentage points on 2010 levels, with 92% of applicable dwellings insulated in 2015 (see Table 10).

54. Lofts with a high standard of insulation (300 mm or more) continue to show a significant year on year increase. While only 5% of lofts were insulated to this standard in 2010 (the first year the SHCS captured this information), by 2015 this figure had increased to 32%. This is an increase of 5 percentage points from 2014.

55. The proportion of dwellings without loft insulation was 1% of all dwellings with lofts in 2015.

56. Figure 9 shows the level of loft insulation in all dwellings back to 2003/4.

57. The number of dwellings with no loft insulation has fallen from 6% in 2003/4 to 1% in 2015. Most of this decline occurred before 2010. Since then improvement has slowed down, suggesting that there may be barriers preventing the installation of insulation in the relatively few remaining lofts.

58. Over the same period the thickness of loft insulation has increased significantly. In 2015, 64% of dwellings with lofts had insulation with a depth of 200 mm or more. Much of this increase has occurred since 2009 ( Figure 9), when 27% of lofts fell into this group and can largely be attributed to the installation of top up insulation.

Figure 9: Depth of Loft Insulation (where applicable) 2003/04 - 2015
Figure 9: Depth of Loft Insulation (where applicable) 2003/04 - 2015

Note: A dwelling is classified as 'not applicable' for loft insulation if it has a flat roof or another dwelling above it ( i.e. it is a mid- or ground-floor flat).

59. For 2009 the SHCS estimated that 1,318,000 lofts had less than 200 mm of insulation, as shown in Table 9. By 2015 this number had decreased by approximately 655,000 to an estimated 663,000 lofts.

60. Between April 2008 and December 2012, the UK government Carbon Emissions Reduction Target ( CERT) scheme delivered 410,937 loft insulation measures in Scotland [13] .

61. Between January 2013 and December 2015 a further 39,279 loft insulation measures were delivered in Scotland by its successor scheme ECO [14] .

62. In total, around 450,000 loft insulation measures have been installed under these government programs since 2008 .

Table 9: Depth of Loft Insulation (000s), 2009 to 2015

Loft Insulation 2015 2014 2013 2012 2011 2010 2009
none 19 15 27 31 32 42 96
1mm-99mm 125 143 113 185 225 279 349
100mm-199mm 518 528 534 617 745 822 872
Subtotal: <200mm 663 686 675 834 1,002 1,143 1,318
200mm or more 1,161 1,123 1,118 975 812 621 485
Not applicable 610 611 606 577 554 592 542
All Dwellings 2,434 2,420 2,399 2,386 2,368 2,357 2,344
Sample size 2,754 2,682 2,723 2,787 3,219 3,114 3,346
Cumulative recorded loft insulation measures under government schemes [15]
CERT (000s) 411 269 157 92
ECO (000s) 39 30 10

63. As shown in Table 10 thickness of loft insulation is greater in social sector dwellings. In 2015, 91% of private housing lofts were insulated to 100 mm or more and 61% to at least 200 mm. In the social sector, 96% of dwellings had lofts insulated to 100 mm or more, and 75% had at least 200 mm of loft insulation.

64. One of the reasons for this difference between private and social sector is that the Scottish Housing Quality Standard ( SHQS) requires at least 100 mm of loft insulation. The SHQS was introduced in 2004, and all social rented dwellings were required to meet this standard by 2015 (see section 6.2.2 for more information).

65. The difference in the proportion of lofts with at least 100 mm insulation between the private and the social sector has been reducing gradually, from 17 percentage points in 2003/04 (81% in the social and 64% in the private sector) to 6 percentage points in 2015 (96% in the social sector and 91% in the private).

Table 10: Depth of Loft Insulation (000s and %) by Tenure, 2014 and 2015 [16]

Year Loft Insulation Private Sector Social Sector All Tenures
000s % 000s % 000s %
2015 none 17 1% 2 1% 19 1%
1mm - 99mm 113 8% 13 4% 125 7%
100mm+ 1,332 91% 347 96% 1,680 92%
100mm - 199mm 442 30% 76 21% 518 28%
200mm - 299mm 455 31% 121 34% 576 32%
300mm or more 435 30% 150 41% 585 32%
Total 1,462 100% 362 100% 1,824 100%
2014 none 15 1% - - 15 1%
1mm - 99mm 135 9% 7 2% 143 8%
100mm+ 1,287 90% 364 98% 1,651 91%
100mm - 199mm 432 30% 96 26% 528 29%
200mm - 299mm 481 33% 158 43% 639 35%
300mm or more 374 26% 110 30% 484 27%
Total 1,437 100% 371 100% 1,809 100%
Sample 2015 1,753 437 2,190
2014 1,708 432 2,140

66. Between 2014 and 2015 the main improvement in loft insulation was in the growing share of lofts insulated to at least 300 mm, from 27% in 2014 to 32% in the following year. This is particularly evident in the social sector where this share rose from 30% to 41%.

3.1.2 Wall Insulation

67. The presence of cavity wall insulation ( CWI) is becoming increasingly difficult for SHCS surveyors to identify as over time the injection holes age, fade or are covered up by later work. Contractors are also getting better at disguising their work. This may mean that the SHCS under-estimates the number of homes which have had CWI installed (see also section 6.2.2). Despite efforts to maintain the high quality of the SHCS physical survey fieldwork, some misclassifications may remain.

68. In Scotland around three quarters of dwellings have external cavity walls and the remaining one quarter have solid or other construction types of external wall. These "other" types include steel or timber-frame dwellings and dwellings made from pre-fabricated concrete. Because the improvement of solid and other wall types generally requires more expensive interventions than CWI, this diverse group is addressed together in this chapter.

69. Table 11 and Table 12 show the number and proportion of insulated dwellings by type of external wall. Higher insulation levels in new buildings have been required by building standards since 1982. These dwellings are therefore presumed insulated when built.

Table 11: Cavity Wall Insulation, 2010 to 2015 [17]

2015 2014 2013 2011 2010
000s % 000s % 000s % 000s % 000s %
Not insulated 525 29% 518 29% 554 31% 600 34% 671 38%
Insulated 1,286 71% 1,287 71% 1,218 69% 1,154 66% 1,076 62%
Total 1,811 100% 1,805 100% 1,772 100% 1,754 100% 1,747 100%
Sample 2,099 2,017 2,051 2,414 2,337
Cumulative reduction in uninsulated cavity wall dwellings since 2007, SHCS
000s 291 298 262 216 145
Cumulative recorded CWI installations under government schemes since 2007, thousands
CERT [18] 178 130
ECO [19] 74 55 19

70. In 2015 71% of cavity wall dwellings in Scotland were insulated ( Table 11). This is the same as recorded by the survey in 2014. Although we know from administrative data that at least 18,000 cavity wall dwellings were insulated during 2015 (through ECO), the change from 2014 has not been picked up by the survey, which is only based on a sample of all dwellings. However the longer term trend is consistent with administrative data, which shows an increase in the share of insulated cavity walls of 6 percentage points since 2011 and 9 percentage points since 2010. This increase is broadly equivalent to the number of cavity wall insulation measures installed under the Carbon Emissions Reduction Target ( CERT) and its successor scheme, the Energy Company Obligation ( ECO) which began in 2013.

71. Between April 2008 and December 2012, the UK government Carbon Emissions Reduction Target ( CERT) scheme delivered around 227,000 wall insulation measures in Scotland [20] (218,000 cavity and 9,000 solid and other walls). Between January 2013 and December 2015 a further 73,718 cavity and 28,610 solid wall insulation measures were delivered in Scotland by the successor Energy Company Obligation ( ECO) scheme [21] . This equates to a total of around 329,000 wall insulation measures being installed under these two government programs by the end of 2015 , including around 292,000 cavity wall insulation measures. This is almost identical to the cumulative reduction of 291,000 uninsulated cavity wall dwellings reported by the SHCS since 2007 ( Table 11).

72. Table 12 shows the levels of insulation in dwellings with solid or other construction type walls recorded by the survey in 2015. The results show that 11% of dwellings in this category had insulated walls. The difference with the level recorded in the previous year (14%) is within the margin of error. Only 655 dwellings with solid walls were surveyed in 2015 as part of the SHCS. This relatively small sample does not allow enough precision to capture the increase in solid wall insulation measures which we know from administrative data is taking place. Since the beginning of January 2013 at least 28,610 solid wall insulation measures were delivered in Scotland [22] , however the proportion of insulated solid wall dwellings recorded by the SHCS has stayed more or less constant between 9% and 17% (allowing for sampling error).

73. Further information on insulation levels by wall type for the private and social housing stock is provided in Table 13.

Table 12: Wall Insulation of Solid and Other Wall Types, 2011 to 2015 [23]

2015 2014 2013 2012 2011
000s % 000s % 000s % 000s % 000s %
Not insulated 552 89% 528 86% 559 89% 557 89% 546 89%
Insulated 71 11% 85 14% 71 11% 66 11% 68 11%
Total 623 100% 613 100% 630 100% 623 100% 614 100%
Sample 655 663 674 711 805
Cumulative recorded EWI installations under government schemes since 2007, thousands
CERT [24] 9 5
ECO [25] 29 18 4

74. Around three quarters (73%) of cavity wall dwellings and a quarter (25%) of dwellings with other wall types in the social sector are estimated to have insulation in 2015. Two-thirds (66%) of social housing overall had insulated walls.

75. Over two thirds (70%) of private sector cavity wall dwellings, and 9% of solid wall dwellings, had insulation in 2015. Just over half (52%) of all private sector dwellings had insulated walls.

76. The information in Table 12 is broken down by type of cavity wall into hard to treat cavities ( HTTC) and standard cavity walls using the ECO definition as far as possible with the available data (further details on the definition are available in section 7.5.6.). HTTCs have certain attributes which make CWI more expensive, complex or simply inadvisable. Standard cavity walls have no such barriers.

Table 13: Insulation by Wall Type and Tenure, 2015 and Insulation of all Wall Types by Tenure, 2014 and 2015 [26]

Wall and Insulation Type Private Sector Social Sector Total
000s %wall % all 000s %wall %all 000s %wall %all
2015
Cavity
Un-insulated 392 30% 21% 133 27% 23% 525 29% 22%
- HTTC 130 10% 7% 58 12% 10% 188 10% 8%
- Standard 262 20% 14% 75 15% 13% 337 19% 14%
Insulated 920 70% 50% 366 73% 62% 1,286 71% 53%
- CWI 462 35% 25% 198 40% 34% 659 36% 27%
- Int/External 40 3% 2% 68 14% 12% 108 6% 4%
- As built 418 32% 23% 100 20% 17% 519 29% 21%
Total 1,312 100% 71% 499 100% 85% 1,811 100% 74%
Sample size 1,527 572 2,099
Solid/Other
Un-insulated 484 91% 26% 67 75% 11% 552 89% 23%
- Pre-1919 413 78% 22% 40 45% 7% 453 73% 19%
- Post-1919 72 13% 4% 27 30% 5% 98 16% 4%
Insulated 48 9% 3% 23 25% 4% 71 11% 3%
- Retrofit 41 8% 2% 23 25% 4% 63 10% 3%
- As built 8 1% 0% - - - 8 1% 0%
Total 533 100% 29% 90 100% 15% 623 100% 26%
Sample size 568 87 655
All Wall Types
Uninsulated 877 48% 200 34% 1077 44%
Insulated 968 52% 389 66% 1357 56%
Total 1,845 100% 589 100% 2,434 100%
Sample size 2,095 659 2,754
2014: All Wall Types
Uninsulated 855 48% 191 31% 1,046 43%
Insulated 938 52% 435 69% 1373 57%
Total 1,792 100% 626 100% 2,418 100%
Sample size 2,008 672 2,680

77. Overall, the majority of work done to cavity walls has been CWI; 36% of cavity wall dwellings in Scotland have had retrofit cavity wall insulation, which is generally the lowest cost improvement available.

78. Levels of insulation are higher in the social sector 66% (all wall types) compared with 52% in the private sector. The difference is more marked with respect to the more expensive measures, internal/external insulation of cavity walls (14% of cavity wall dwellings in the social sector compared to 3% in the private) and solid wall insulation measures (25% compared to 8% respectively).

79. No improvement in wall insulation levels is recorded in the survey for either the private or the social housing sector since 2014.

3.2 Boilers

80. The heating system is a key factor in the thermal efficiency of a dwelling.

81. Around 85% of households use a gas or oil-fuelled boiler. Trends in boiler efficiency are closely related to developments in energy efficiency and building standards regulations:

  • From 1998, minimum boiler efficiency standards were set by European Council Directive 92/42/ EEC [27]
  • Since 2007, Scottish Building Standards increased the efficiency requirements for all new and replacement boilers [28]

82. Building regulations in Scotland effectively require the installation of a condensing boiler [29] for gas and oil-fuelled heating in new builds or when boilers are replaced.

83. The SHCS records the age of the heating system since 2010 and contains sufficient data to derive the Seasonal Efficiency ( SEDBUK) ratings of surveyed boilers in the 2012-2015 data collections. For these years we can track the energy efficiency improvement of gas and oil boilers associated with the rising standards of the regulatory framework.

84. The minimum requirements for the installation of new boilers in new buildings are: a minimum efficiency of 88% for standard gas, oil and LPG boilers and 86% for condensing combination boilers; 75% for gas ranges and 63% for gas room heaters; 80% for oil-fuelled ranges and 60% for oil room heaters [30] .

Table 14: Gas and Oil Boiler Improvements, 2007-2015

2015 2014 2013 2012 2011 2010 2009 2008 2007
Households using gas or oil boilers for heating
% 85% 84% 84% 82% 83% 83% 83% 82% 82%
000s 2,075 2,041 2,022 1,960 1,963 1,945 1,935 1,906 1,896
… of which
% "new" boilers (post-1998) 89% 85% 83% 81% 73% 70%
% condensing boilers 56% 48% 43% 38% 33% 22% 17% 12% 7%
% standards compliant 48% 41% 38% 32%
Sample (gas/oil boilers) 2,259 2,195 2,219 2,222 2,601 2,488 2,684 2,414 2,410

85. In 2015 the survey found that 89% of the domestic gas and oil boilers in Scotland were installed since 1998, when the European Boiler Efficiency Directive minimum standards came into effect. The proportion installed in accordance with this directive has increased by 19 percentage points since 2010.

86. In 2015, over half (56%) of gas and oil boilers were condensing boilers. This represents a rapid increase of 49 percentage points over eight years.

87. In 2015, 48% of gas and oil boilers meet the minimum efficiencies specified by current Building Standards, an increase of 7 percentage points from 2014. As older boilers reach the end of their life and are replaced, we expect to see a continuation of this trend of improving efficiency.

3.3 Energy Performance Certificates

  • Just over two-fifths (42%) of the housing stock in 2015 had an EPC rating of C or better (under SAP 2009), up 18 points since 2010.
  • 37% of all properties were rated C or better under SAP 2012 and half of all Scottish dwellings were rated 65 or better.

88. Energy Performance Certificates ( EPC) [31] were introduced in January 2009 under the requirements of the EU Energy Performance Building Directive ( EPBD). They provide energy efficiency and environmental impact ratings for buildings based on standardized usage. EPCs are required when a property is either sold or rented to a new tenant.

89. EPCs are generated through the use of a standard calculation methodology, known as Standard Assessment Procedure ( SAP). SAP is the UK Government approved way of assessing the energy performance of a building, taking into account the energy needed for space and water heating, ventilation and lighting and, where relevant, energy generated by renewables.

90. The Energy Efficiency Rating ( EER) is expressed on a scale of 1-100 where a dwelling with a rating of 1 will have very poor energy efficiency and high fuel bills, while 100 represents very high energy efficiency and low fuel bills. Ratings can exceed 100 where the dwelling generates more energy than it uses.

91. Ratings are adjusted for floor area so that they are essentially independent of dwelling size for a given built form.

92. For Energy Performance Certificates EERs are presented over 7 bands, labeled A to G. Band A represents low energy cost and high energy efficiency, while band G denotes high energy cost (and low energy efficiency).

93. Energy Efficiency Ratings reported in this publication are calculated under two versions of SAP, the SAP 2009 methodology [32] and the most recent SAP 2012 methodology [33] . Using SAP 2009 enables us to examine the trend in the energy efficiency of the housing stock since 2010. SAP 2012 was first used in reporting data from the SHCS in the 2014 Key Findings report and therefore only two years of data are available.

3.3.1 Energy Efficiency Rating, SAP 2009

94. Table 15 shows the trend in mean EE Ratings, which rose from 59.9 in 2010 to 64.6 in 2014. These EE Ratings fall into band D. There has been around a 1 point increase in the average EE Rating each year since 2010, except in the last year.

Table 15: Average EER for 2010 - 2015, SAP 2009

2015 2014 2013 2012 2011 2010
EER Mean 64.6 64.1 63.2 61.8 60.9 59.9
Median 67 67 66 64 63 62
Sample 2,754 2,682 2,725 2,787 3,219 3,115

95. The median EE Rating has also improved over this period. In 2015 half of all Scottish dwellings were rated 67 or better, similar to the previous year.

Figure 10: Median EER relative to EPC bands, SAP 2009, 2010-2015
Figure 10: Median EER relative to EPC bands, SAP 2009, 2010-2015

96. The average figures reflect that Scottish housing is gradually moving up through the EPC bands (where A is the most energy efficient), as shown in Figure 11 and Table 16.

Figure 11: Distribution of the Scottish Housing Stock by EPC Band, SAP 2009, 2011-2015
Figure 11: Distribution of the Scottish Housing Stock by EPC Band, SAP 2009, 2011-2015

Values for this figure are provided in Table 16.

97. Just over two-fifths (42%) of the housing stock in 2015 had an EPC rating of C or better, up 18 points since 2010 ( Table 16). Over the period 2010-2015, the proportion of properties in the lowest EPC bands, E, F and G, has nearly halved: 27% of properties were rated E, F or G in 2010 compared with 15% in 2015.

Table 16: Distribution of the Scottish Housing Stock by EPC Band, SAP 2009, 2010-2015

EPC band 2015 2014 2013 2012 2011 2010
000s % 000s % 000s % 000s % 000s % 000s %
A (92-100) - - - - - - - - - - - -
B (81-91) 62 3% 42 2% 29 1% 20 1% 25 1% 18 1%
C (69-80) 953 39% 939 39% 851 36% 699 29% 606 26% 547 23%
D (55-68) 1,055 43% 1,037 43% 1,072 45% 1,184 50% 1,191 50% 1,157 49%
E (39-54) 298 12% 321 13% 359 15% 381 16% 431 18% 495 21%
F (21-38) 59 2% 68 3% 84 4% 82 3% 96 4% 127 5%
G (1-20) 7 0% 14 0% 8 0% 21 1% 19 1% 13 1%
Total 2,434 100% 2,420 100% 2,402 100% 2,386 100% 2,368 100% 2,357 100%
Sample 2,754 2,682 2,725 2,787 3,219 3,115

No A-rated properties were sampled between 2010 and 2015.

3.3.2 Energy Efficiency Rating, SAP 2012

98. This section examines the energy efficiency profile of the Scottish housing stock in 2015 under the most recent SAP 2012 methodology [34] .

99. SAP is periodically reviewed by the UK government to ensure it remains fit for purpose and to address application across an increasing range of carbon and energy reduction policy areas. SAP is used for assessment of new buildings whilst a 'reduced data' version of the methodology, RdSAP, is applied to assessment of existing buildings. On 7 December 2014, a new edition of RdSAP (version 9.92) [35] was implemented across the UK. In addition to introducing some technical updates and broadening of scope (for example, enabling assessment of 'park homes' as a dwelling type), the new edition includes updated UK carbon factors and fuel costs based upon recent research undertaken by BEIS.

100. Tables 17 and 18 show the energy efficiency profile of the Scottish housing stock in 2015 under SAP 2012, and in comparison to 2014. Figure 12 shows this alongside the longer term change as measured by SAP 2009.

Table 17: Average EER for 2015 and 2014, SAP 2012

2015 2014
EER Mean 62.8 62.2
Median 65 65
Sample 2,754 2,682

101. In 2015, the mean energy efficiency rating of the Scottish housing stock under SAP 2012 is 62.8 and the median is 65 points, indicating that half of the housing stock has an energy efficiency rating of 65 or better. The apparent small improvement in the mean rating since 2014 in Table 17 is within the margin of error.

102. Over a third (37%) of all properties were rated C or better and about a fifth (20%) were in bands E, F or G.

Table 18: Distribution of the Scottish Housing Stock by EPC Band in 2014 and 2015, SAP 2012

EPC Band 2015 2014
000s % 000s %
A (92-100) - - - -
B (81-91) 53 2% 29 1%
C (69-80) 837 34% 830 34%
D (55-68) 1,061 44% 1,052 43%
E (39-54) 368 15% 369 15%
F (21-38) 94 4% 115 5%
G (1-20) 20 1% 25 1%
Total 2,434 100% 2,420 100%
Sample 2,754 2,682

No A-rated properties were sampled in 2014 or 2015.

103. Figure 12 shows a strong trend of improvement in the energy efficiency profile of the housing stock since 2010. The proportion of dwellings rated C or better increased from 24% to 42% of the stock (as measured under SAP 2009), equivalent to a 74% improvement in the share of the most energy efficient dwellings. The observed improvement in the last year, as measured by both SAP 2009 and SAP 2012 is within the margin of error for this survey.

Figure 12: Grouped EPC Bands under SAP 2009 and SAP 2012, 2010-2015
Figure 12: Grouped EPC Bands under SAP 2009 and SAP 2012, 2010-2015

104. Table 19 shows the energy efficiency profile by broad tenure groups in 2015 using SAP 2012. Figure 13 provides more details on the distribution of the least energy efficiency properties by selected dwelling and household characteristics.

Table 19: EPC Band by Broad Tenure in 2015, SAP 2012

EPC Band Owner occupied Private rented Social sector All Tenures
000s % 000s % 000s % 000s %
A (92-100) - - - - - - - -
B (81-91) 23 2% 12 3% 18 3% 53 2%
C (69-80) 460 31% 103 30% 274 46% 837 34%
D (55-68) 690 46% 131 38% 239 41% 1,061 44%
E (39-54) 258 17% 65 19% 45 8% 368 15%
F (21-38) 54 4% 26 8% 13 2% 94 4%
G (1-20) 17 1% 4 1% - - 20 1%
Total 1,502 100% 342 100% 589 100% 2,434 100%
Sample 1,740 355 659 2,754

105. Nearly half (49%) of social housing is in band C or better under SAP 2012, compared to around a third of dwellings in the private sector. Ten percent of dwellings in the social sector are in bands E, F or G, while 22% of owner occupied dwellings and 28% of the private rented sector are within these EPC bands.

106. The share of dwellings in the lowest energy efficiency bands (F and G) is particularly high for pre-1919 dwellings (14%), non-gas heated properties (between 17% and 20%), detached properties (11%) and in the private rented stock (9%) ( Figure 13). The average for Scotland as a whole is 5%.

Figure 13: Proportion of Homes in Band F or G by Dwelling Age, Primary Heating Fuel, Tenure and Household and Dwelling Type in 2015, SAP 2012
Figure 13: Proportion of Homes in Band F or G by Dwelling Age, Primary Heating Fuel, Tenure and Household and Dwelling Type in 2015, SAP 2012

Base figures provided in Table 20 and Table 21

107. More detailed breakdowns in terms of average scores and EPC bands are shown in Table 20 (by household characteristics) and Table 21 (by dwelling attributes). .

108. The average energy efficiency rating for Housing Association dwellings is higher than other tenure groups, at 69.2. Social housing as a whole is more energy efficient than private sector dwellings, with a mean of 66.7 compared to 61.6 for private dwellings.

Table 20: Mean EER and Broad EPC Band, by Household Characteristics in 2015, SAP 2012

EE Rating Band Sample
Mean BC DE FG
Tenure
Owned outright 60.1 26% 67% 6% 929
Mortgaged 63.6 38% 59% 3% 811
LA/Other public 64.8 38% 59% 3% 380
HA/co-op 69.2 65% 34% 2% 279
PRS 60.7 34% 57% 9% 355
Private 61.6 32% 62% 5% 2,095
Social 66.7 49% 48% 2% 659
Household Composition
Older Households 61.9 32% 64% 5% 841
Families 64.2 41% 54% 5% 679
Other households 62.8 37% 58% 5% 1,234
Weekly Household Income
< £200 63.1 37% 59% 4% 328
£200-300 64.4 41% 54% 4% 475
£300-400 63.7 40% 56% 3% 463
£400-500 62.0 29% 67% 4% 322
£500-700 61.4 33% 60% 7% 480
£700+ 62.6 38% 57% 5% 640
Council Tax Band
Band A 64.4 40% 56% 3% 546
Band B 62.3 35% 59% 5% 644
Band C 63.0 36% 60% 5% 466
Band D 63.0 38% 58% 4% 375
Band E 61.7 34% 59% 7% 377
Band F 63.2 36% 60% 4% 200
Band G & H 62.0 38% 58% 4% 137
Scotland 62.8 37% 59% 5% 2,754

Note: The age threshold for older households in 2015 has changed to 65 for both men and women. This affects comparability with 2014 across household types, except for families .

109. The association between the dwelling characteristics and energy efficiency rating, as shown in Table 21, is strong. Across dwelling types, detached properties have the lowest energy efficiency profile on average (mean EER 58.2) while flats have the highest rating (and average of 66.3 for tenements and other flats combined).

110. The oldest, pre-1919, properties are least energy efficient (with a mean EER of 54.8 and only 17% rated C or better) while those built after 1982 have the highest energy efficiency ratings (with a mean of 70.5 and 67% in band C or better). The remaining age categories are comparable in terms of their energy efficiency profile.

Table 21: SAP 2012: Mean EER, Differences from 2014 and Broad EPC Band, by Dwelling Characteristics, 2015

EE Rating Band Sample
Mean Differences from 2014 BC DE FG
Dwelling Type
Detached 58.2 26% 63% 11% 692
Semi 61.1 26% 69% 4% 594
Terraced 63.3 35% 62% 3% 626
Tenement 66.4 51% 47% 3% 506
Other flats 66.0 46% 52% 1% 336
Age of dwelling
pre-1919 54.8 +3.2 17% 69% 14% 489
1919-1944 61.1 24% 73% 3% 321
1945-1964 63.0 34% 63% 3% 608
1965-1982 62.4 30% 67% 3% 644
post-1982 70.5 67% 31% 1% 692
Primary Heating Fuel
Gas 65.4 41% 58% 1% 2,033
Oil 49.5 8% 72% 20% 236
Electric 55.0 25% 58% 17% 401
Other 56.0 34% 48% 18% 79
Location
urban 64.6 40% 57% 2% 2,147
rural 54.1 19% 65% 17% 607
Gas Grid
On 64.4 38% 60% 2% 2,138
Off 55.1 29% 52% 19% 616
Scotland 62.8 37% 59% 5% 2,754

111. Primary heating fuel is a key determinant of the energy efficiency of the dwelling. Properties heated by mains gas have an average rating of 65.4 and 41% are in band C or better. Dwellings heated by other fuels have a considerably lower rating. The average energy efficiency rating for oil heated properties is 49.5 (making the average dwelling in this group D rated) and only 8% are in band C or better. Proximity to the gas grid has a similar effect on the energy efficiency rating. As dwelling characteristics associated with lower energy efficiency are disproportionately represented in rural areas, the average energy efficiency profile of rural properties tends to be lower than that for urban.

112. The only improvements since 2014 which pass the statistical significance test are a 3.2 points gain in the mean SAP score for pre-1919 dwellings and an increase in the share of B and C rated electrically heated properties, from 17% in 2014 to 25% in the following year.

3.4 National Home Energy Ratings ( NHER)

113. The National Home Energy Ratings ( NHER) system was the main methodology used in the SHCS to report on the energy efficiency of the housing stock prior to 2013. With the publication of the 2013 SHCS Key Findings Report the energy modelling methodology was updated and it is no longer possible to reproduce exactly the original NHER method, as the full documentation of this method is not publicly available. However because of user interest and because NHER scores are taken into account under the energy efficiency criterion of the SHQS, we provide an approximate NHER score. Further details on how this emulated NHER score compares to previously published NHER figures can be found in the Methodology Notes to the 2013 SHCS report [36] .

114. Table 22 presents banded NHER scores and mean values for selected categories of dwellings and household types for 2015.

Table 22: NHER Scores and Banded Ratings by Selected Dwelling and Household Characteristics, 2015

Mean NHER band Sample
Good Moderate Poor
Scotland 7.4 72% 26% 2% 2,754
Dwelling Type
Detached 6.7 61% 36% 3% 692
Semi-detached 7.0 67% 32% 2% 594
Terraced 7.3 76% 24% 1% 626
Tenement 8.0 80% 19% 2% 506
Other flats 7.8 82% 18% 0% 336
Age of dwelling
pre-1919 6.3 50% 45% 5% 489
1919-1944 7.0 67% 31% 1% 321
1945-1964 7.3 73% 26% 1% 608
1965-1982 7.2 73% 26% 1% 644
post-1982 8.5 92% 8% 0% 692
Primary Heating Fuel
Gas 7.7 80% 19% 0% 2,033
Oil 5.9 38% 58% 3% 236
Electric 5.9 41% 49% 10% 401
Other fuel type 7.1 58% 40% 2% 79
Tenure
Owner occupied 6.9 66% 32% 2% 929
Mortgaged 7.4 75% 24% 1% 811
LA 7.6 78% 20% 2% 380
HA 8.4 87% 12% 1% 279
Private rented 7.1 65% 33% 3% 355
Private Sector 7.2 69% 29% 2% 2,095
Social Sector 7.9 82% 16% 1% 659
Household Composition
Older Households 7.3 72% 27% 1% 841
Families 7.5 75% 23% 2% 679
Other Households 7.4 71% 27% 2% 1,234

Note: The age threshold for older households in 2015 has changed to 65 for both men and women. This affects comparability with 2014 across household types, except for families .

3.5 Carbon Emissions

115. Carbon Emissions are the amount of carbon dioxide gas vented to the atmosphere. Estimates of emissions from the residential sector which take into account actual energy consumption by households are reported by BEIS at Local Authority and Scotland level annually [37] . This methodology is consistent with the Greenhouse Gas Inventory ( GHGI) which is the source for monitoring progress against the Scottish Government's climate change commitments.

116. In contrast, emissions reported from the SHCS are modelled on the assumption of a standard pattern of domestic energy consumption and do not reflect differences in consumption behaviour due to preferences or changes in weather conditions. As such, they are distinct from the carbon emissions figures published by BEIS and compiled in GHG inventories. Table 23 shows modelled emissions from the SHCS and provides a comparison with the estimates published by BEIS for the period 2010-2014.

Table 23: Carbon Emissions and Modelled Emissions in Scottish Housing, 2010-2015

2010 2011 2012 2013 2014* 2015*
Carbon Emissions 1: BEIS Domestic sector Total (Mtonnes) 13.7 12.0 12.8 12.3 10.4
per HH (tonnes) 2 5.8 5.1 5.4 5.1 4.3
% change per HH +6.0% -13.0% +6.1% -4.3% -16.6%
Modelled Emissions: SHCS Total (Mtonnes) 18.6 18.2 18.1 17.4 17.9 17.7
per HH (tonnes) 7.9 7.7 7.6 7.3 7.4 7.3
% change per HH - -2.6% -1.4% -3.6% +1.1% -1.8%

[1] Local and Regional CO 2 Emissions Estimates, BEIS
https://www.gov.uk/government/statistics/uk-local-authority-and-regional-carbon-dioxide-emissions-national-statistics-2005-2014

[2] Number of households ( HHs) sourced from Housing Statistics for Scotland: http://www.gov.scot/Topics/Statistics/Browse/Housing-Regeneration/HSfS/KeyInfoTables
* Modelled emissions figures for 2014 and 2015 are not fully comparable to previous years

117. In 2012, cooler temperatures led to an increase in domestic energy use and an increase in CO 2 emissions from the domestic sector overall. This was reflected in the estimates of emissions levels from the domestic sector reported by BEIS. At the same time, modelled SHCS emissions per household fell by 1.4%, reflecting the improved energy efficiency of the sector in this period and the greater potential to reduce CO 2 emissions. The SHCS estimates are not designed to capture the increased demand for heating due to colder weather in this particular year.

118. Estimates in the Second Report on Proposals and Policies ( RPP2) [38] are also not comparable to SHCS estimates. RPP2 figures relate to non-traded emissions only ( i.e. exclude electricity which is covered by the EU Emissions Trading System) while SHCS estimates cover all fuel types.

119. This report is only concerned with the level and variations in modelled emissions from the Scottish housing stock. These estimates are produced through the use of BREDEM 2012 - based models, in line with other statistics on energy efficiency and fuel poverty reported here.

120. To derive emissions estimates, modelled energy demand is combined with carbon intensity factors as adopted for the 2012 edition of the SAP (see section 7.3). These are CO 2 equivalent figures which include the global warming impact of CH 4 and N 2O as well as CO 2.

121. The change in the underlying BREDEM 2012 model for the reporting of 2014 data has meant that carbon emissions for 2014 and 2015, on the one hand, and the period 2010-2013, on the other, are not estimated on a consistent basis. Further details on this methodological change are given in the Methodology Notes to the 2014 Key Findings report [39] .

3.5.1 Modelled Emissions by Dwelling Type and Age of Construction

122. The annual modelled emissions from a property reflect the energy use for the whole dwelling heated according to the standard heating regime. As shown in Figure 14, dwellings with larger floor area generally have higher carbon emissions.

123. Newer dwellings have lower modelled emissions than older ones on average as a result of their better thermal performance and higher energy efficiency (as shown in section 3.3). Post-1982 flats have the lowest modelled emissions on average; less than 4 tonnes per year ( Table 24).

Figure 14: Average Floor Area and Average Modelled Annual Emissions by Age and Type of Dwelling, 2015
Figure 14: Average Floor Area and Average Modelled Annual Emissions by Age and Type of Dwelling, 2015

Note: Floor area for these subgroups are provided in section 2.1.1. Modelled carbon emissions figures are provided in Table 24.
The pale blue line indicates the average modelled emissions from the dwelling age group

Table 24: Average Modelled Annual Carbon Emissions (tonnes per year) by Dwelling Age and Type, 2015

Dwelling Type Dwelling Age All
Pre-1919 1919-1982 Post-1982
Detached 18.4 10.3 8.4 11.1
Semi-detached 14.1 7.4 5.4 7.6
Terraced 10.9 6.4 5.7 6.8
Tenement 5.7 4.6 3.7 4.8
Other flats 8.6 5.0 3.3 5.5
All dwelling types 10.2 6.7 6.1 7.3

124. Across all age bands, detached houses have the highest modelled emissions due to a larger share of exposed surfaces. As shown in section 2.3, they are also the most likely to use high carbon-intensity fuels such as oil and coal in place of mains gas.

125. By dividing modelled emissions by total internal floor area we derive emissions per square meter (kg/m 2). Controlling for floor area in this way shows that pre-1919 detached houses have the highest modelled emissions per sq m (115 kg/m² ), as shown in Table 25. Post-1982 flats have the lowest emissions, at 56 kg/m 2 for tenements and 60 kg/m2 for other flats.

Table 25: Average Modelled Emissions per Square Meter of Floor Area (kg/m 2) by Age and Type of Dwelling, 2015

Dwelling Age Pre-1919 1919-1982 Post-1982 All Ages
Type Detached 115 84 62 81
Semi 92 84 64 80
Terraced 87 78 67 77
Tenement 88 76 56 76
Other flats 78 73 60 73
All types 93 79 62 78

126. Controlling for floor area also demonstrates that a significant improvement in the level of emissions for older properties has occurred between 2014 and 2015. From 102 kg/m 2 in 2014 the average emissions for this group has dropped to 93 kg/m 2 in 2015, a reduction of nearly 10%.

3.5.2 Modelled Emissions by Tenure

127. Figure 15 and Table 26 show how emissions differ across tenure for the period 2010 - 2015. The pattern of differences across tenure types has remained similar to previous years: with highest rates of emissions observed for the PRS (87 kg/m 2) and lowest for the HA sector (70 kg/m 2) and the remaining types of tenure with similar values in between. Although there is a suggestion that emissions are declining across all types, these reductions are not statistically significant.

Figure 15: Modelled Emission per square meter (kg/m2) by Tenure, 2010-2015*
Figure 15: Modelled Emission per square meter (kg/m2) by Tenure, 2010-2015*

Note: * Figures for 2014 and 2015 are not fully comparable to previous years

Table 26: Average Modelled Emissions per Square Meter by Tenure, 2010-2015

2015* 2014* 2013 2012 2011 2010
Owned outright 79 81 81 94 92 98
Mortgaged 74 78 79 85 90 90
LA/Other public 78 77 79 82 84 89
HA/co-op 70 71 70 79 79 79
PRS 87 89 90 93 100 101
All Tenures 78 80 80 88 90 92

Note: * Figures for 2014 and 2015 are not fully comparable to previous years

3.6 Environmental Impact Rating

128. The Environmental Impact Rating ( EIR) represents the environmental impact of a dwelling in terms of carbon emissions associated with fuels used for heating, hot water, lighting and ventilation. Ratings are adjusted for floor area so they are independent of dwelling size for a given built form. Emissions for this measure are calculated using SAP methodology.

129. EI ratings were previously published in the 2013 SHCS Key Findings report for the period 2010-2013 [40] . These were produced on the basis of SAP 2009 and are therefore not fully comparable to the EI rating for 2015 published in the current report which is based on SAP 2012.

130. Figure 16 illustrates the trend in the median EIR between 2010 and 2015. This indicates that the environmental impact of Scottish housing is falling over time.

Figure 16: Median EIR relative to Band, 2010-2013 ( SAP 2009) and 2015 ( SAP 2012)
Figure 16: Median EIR relative to Band, 2010-2013 (SAP 2009) and 2015 (SAP 2012)

131. As shown in Table 27 the proportion of dwellings with EI ratings in band C or better in 2015 was 27%. The average rating was 58 which falls in band D.

132. In 2015, 11% of dwellings were rated F or G in terms of their environmental impact.

Table 27: EIR Bands in the Scottish Housing Stock, 2010-2013 and 2015

EPC Band 2015 2013 2012 2011 2010
000s % 000s % 000s % 000s % 000s %
A - B (81+) 102 4% 79 3% 71 3% 52 2% 55 2%
C (69-80) 554 23% 683 29% 524 22% 468 20% 424 18%
D (55-68) 926 38% 895 37% 888 37% 873 37% 857 37%
E (39-54) 576 24% 509 21% 587 25% 623 27% 615 26%
F (21-38) 221 9% 197 8% 248 10% 270 12% 297 13%
G (1-20) 55 2% 38 2% 64 3% 64 3% 81 4%
Total 2,434 100% 2,402 100% 2,383 100% 2,349 100% 2,330 100%
Mean 58.0 59.7 57.0 55.9 54.9
Median 61 63 60 59 58
Sample 2,754 2,725 2,783 3,191 3,073

133. Figure 17 illustrates that the energy efficiency and the environmental impact rating for the median Scottish dwelling have changed in parallel since 2010.

Figure 17: Trend in Median EE and EI Ratings, 2010-2013 and 2015
Figure 17: Trend in Median EE and EI Ratings, 2010-2013 and 2015

134. Table 28 shows how EI ratings vary across different type of dwellings. As expected dwellings built more recently have better environmental impact ratings with 53% rated C or better and only 3% in the bottom two bands (F and G). Flats have lower environmental impact than houses, as do gas heated properties compared to those using oil or electricity.

135. Oil heating systems and houses are more common in rural areas, leading to lower overall environmental impact ratings for rural dwellings.

Table 28: Mean EIR and Broad EIR Band, by Dwelling Characteristics, 2015

Environmental Impact Rating EI Band Sample
Mean ABC DE FG
Dwelling Type
Detached 52.2 16% 63% 21% 692
Semi-detached 55.7 17% 71% 13% 594
Terraced 58.5 22% 68% 9% 626
Tenement 63.7 46% 48% 6% 506
Other flats 62.2 34% 60% 6% 336
Age of Dwelling
pre-1919 48.7 13% 61% 25% 489
1919-1944 56.5 18% 72% 10% 321
1945-1964 58.5 25% 65% 10% 608
1965-1982 57.6 18% 73% 9% 644
post-1982 67.5 53% 44% 3% 692
Primary Heating Fuel
Gas 61.9 31% 65% 4% 2,033
Oil 41.0 3% 55% 43% 236
Electric 43.8 9% 50% 41% 401
Other fuel type 58.1 57% 12% 31% 79
Urban-Rural Indicator
Urban 60.5 29% 64% 7% 2,147
Rural 47.6 16% 53% 31% 607
Gas Grid
On 60.0 27% 66% 7% 2,138
Off 49.4 27% 39% 35% 616
Scotland 58.3 27% 62% 11% 2,754

Contact

Back to top