We are testing a new beta website for gov.scot go to new site

wrapper

Scottish Marine and Freshwater Science Vol 6 No 14: Developing an avian collision risk model to incorporate variability and uncertainty

Scottish Marine and Freshwater Science Vol 6 No 14: Developing an avian collision risk model to incorporate variability and uncertainty

Wednesday, September 30, 2015

ISBN: 9781785446801

The report describes the data required, and the methods used, to estimate collision risk. It is accompanied by a worked example and R code (available at http://dx.doi.org/10.7489/1657-1), which enables the collision risk calculations to be performed in a standardised and reproducible way.

Executive Summary

The general purpose of this collision risk model update is to further develop the application of the Band model using a simulation approach to incorporate variability and uncertainty. In this report we refer to variability as the inherent heterogeneity of the environment and uncertainty as a lack of data or incomplete knowledge. The simulation model randomly samples from distributions for each of the model parameters and the simulations can then be used to derive average collision estimates, with associated confidence intervals. The model update will therefore allow for a better understanding of the uncertainty associated with the predicted collision impact of a wind farm development and provide confidence limits, something which has previously been absent. In addition, the incorporation of uncertainty would reduce the possibility that a collision estimate was driven by the choice of a single input parameter value. Ultimately, the update should aid streamlining of the planning/consenting stages of a development by providing information not only on the magnitude of collisions i.e. the number of collision events, but also the likelihood of that number of collisions occurring.

In this model update, variability and uncertainty are considered together in combination, rather than separately. Some model input parameters will have associated variability, for example bird body length, others may be expected to be point estimates with associated uncertainty, such as turbine rotor radius, and some parameters may have both variability and uncertainty. Ideally it would be possible to differentiate between variability and uncertainty but at present this is not possible due to a lack of data. However, including variability and uncertainty in combination in the model still provides a significant step forward.

The report describes the data required, and the methods used, to estimate collision risk. It is accompanied by a worked example and R code (available at http://dx.doi.org/10.7489/1657-1), which enables the collision risk calculations to be performed in a standardised and reproducible way.